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1 Introduction

Algebraic geometry is about solutions of polynomial equations and the geometric struc-
tures on the space of those solutions. We use the language and techniques from abstract
algebra on these geometric objects.

Geometry becomes interesting when local properties reveal to us global properties. Alge-
bra provides us a very powerful tool to do that.

1.1 Terminology

A field k is algebraically closed if any non-constant polynomial f ∈ k[x] has at least one
root/zero in k i.e if f ∈ k[x], then f(x) = µ

∏
(x – λi)ei where λi ∈ k are the roots. The field

R is not algebraically closed as f(x)x+1 has no root in R, whereas C is algebraically closed.

The affine space of field k is denoted by An
k which is the Cartesian n-product of k.

The true coordinate ring O(An) of functions on An is the commutative ring k[x1, ..., xn] of
polynomials with n variables.

Let f ∈ k[x1, ..., xn] be a polynomial. Then, V(f) is the set of zeros of f and is called the
hypersurface defined by f. If S is a set of polynomials from k[x1, .., xn], then V(S) := {p ∈
An

k|f(p) = 0,∀f ∈ S}. One can check that V(S) = ∩f∈SV(f). When S = {f1, ..., fr}, we write
V(S) as V(f1, ..., fr).

Example: Consider k[x] which is a principal ideal domain. Therefore, every algebraic set
can be written as the set of zeros of a single polynomial.

A subset X ⊆ An
k is called an affine algebraic set if X = V(S) for some set S of polynomials

in k[x1, ..., xn]. Throughout these notes, we will use the term affine variety to mean the
same thing as affine algebraic sets (although some texts refer to only irreducible algebraic
sets as affine varieties). One can easily show that if I is the ideal in k[x1, ..., xn] generated
by polynomials in S, then V(S) = V(I). Suppose, I = (f1, ..., fn), then, V(I) = ∩n

i=1V(fi). Some
more properties:

(1) If {Iα} is a collection of ideals, then V(∪αIα) = ∩αV(Iα). (2) I ⊂ J =⇒ V(J) ⊂ V(I) (3)
V(fg) = V(f) ∪ V(g) (4) Any finite subset of An

k is an algebraic set (5) V(A) = V((A)) where
(A) is the ideal generated by A.

The ideal generated by a set of functions f1, ..., fm ∈ k[x1, ..., xn] is the set (f1, ..., fm) :=
{
∑m

i=1 gifi : gi ∈ k[x1, ..., xn]}. For a subset X ⊆ An
k, consider the ideal in k[x1, ..., xn]
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generated by polynomials that vanish on X. This ideal is called the vanishing ideal of X,
denoted by I(X). So,
I(X) = {f ∈ k[x1, ..., xn] : f(a) = 0, ∀a ∈ X}. So, if f, g ∈ I, then f + g ∈ I and for any
h ∈ k[x1, ..., xn], hf ∈ I. Some more properties:

(1) X ⊂ Y =⇒ I(Y) ⊂ I(X) (2) I(∅) = k[x1, ..., xn], I(An) = ∅, I({a}) = (x1 – a1, ..., xn – an).

We say f1, ..., fm scheme-theoretically define the affine variety X ⊂ An if I(X) = (f1, ..., fm) i.e
the ideal generated by f1, ..., fm. Furthermore, the ideal I is said to set-theoretically define
variety X if X = V(I) if It can be easily shown that V(I(X)) = X. V(–) and I(–) allow us to
switch betwen the geometric world and the algebraic world which is a key tool used in
algebraic geometry. In particular, later on, we will see that using Hilbert’s Nullstellensatz,
there is no information lost after we make this switch.

We also define fractional fields. Let R be an integral domain. Its fractional field K = Frac(R)
is defined as the ring

K := {
f
g

: f, g ∈ R, g ̸= 0}

.

A polynomial mapping/morphism p : V → W, where V ⊂ An, W ⊂ Am are vari-
eties, is a mapping such that (x1, ..., xn) → f(x1, ..., xn) := (f1(x1, ..., xn), ..., fm(x1, ..., xn)),
fi ∈ k[x1, ...., xn] and the image of the algebraic set V lies inside the algebraic set W. The
mapping set Map(V, W) is the set of all polynomial maps from V to W and in our case this
is the set of all polynomial maps from V to W. We need polynomial mappings in order to
investigate the relationships between varieties. Given X is an affine variety, an automor-
phism of X is a polynomial map f : X → X which is an isomorphism. Aux(X) denotes the
group of all automorphisms of X.
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2 Hilbert Basis Theorem

First, we note that for a := (a1, ..., an) ∈ An
k, I({a}) = (x1 – a1, ..., xn – an) ⊂ k[x1, ..., xn]. To see

this, note that (x1 – a1, ..., xn – an) ⊂ I({a}) which is straightforward. To see the other direc-
tion, suppose f ∈ I({a}). Since f ∈ k[x1, .., xn], we can write it as f =

∑
i1,...in≥0 ai1···inxi1

1 · · · xin
n .

Since f(a) = 0, we can write this as f(x) =
∑

i1,...in≥0 bi1···in(x1 – a1)i1 · · · (xn – an)in and so
f(x) ∈ (x1 – a1, ..., xn – an).

Definition 1. A ring R is called Noetherian if every ideal in R is finitely generated.

Example: Fields and Principal Ideal Domains (PIDs) are Noetherian rings.

One can easily verify the following:

R is Noetherian if and only if every sequence of ideals I1 ⊂ I2 ⊂ · · · stabilizes i.e there
exists N such that IN = IN+1 = · · · .

Proof. Forward direction: If every ideal is finitely generated then the ideal ∪iIi is finitely
generated and so the generating set of ∪iIi must lie in some IN. Conversely, suppose
the sequence stabilizes but there exists an I that is not finitely generated. Then take a
sequence of fi ∈ I such that fi ̸∈ (f1, ..., fi–1) yields an increasing sequence of ideals i.e
(f1) ⊂ (f1, f2) ⊂ (f1, f2, f3) ⊂ · · · that does not stabilize - contradiction.

Theorem 1. (Hilbert Basis Theorem) If R is a Noetherian ring, then R[x1, ..., xn] is a Noethe-
rian Ring.

Proof. We know R[x1, ..., xn] ∼= R[x1, ..., xn–1][xn]. So, if we can prove that R Noetherian im-
plies R[x] is Noetherian, by induction we will have proven that R[x1, ..., xn] is also Noethe-
rian.

Suppose R is Noetherian. Let I be an ideal in R[x]. Let J denote the set of leading coeffi-
cients of polynomials in I. Then, given I is an ideal, J is an ideal in R. Since R is Noetherian,
we can write that J is generated by the leading coefficients of f1, ..., fr ∈ I. Suppose N ∈ Z
such that N is greater than the degrees of all polynomials f1, ..., fr. Then, for any m ≤ N,
we define Jm to be the ideal in R generated by the leading coefficients of all polynomials
f in I such that deg(f) ≤ m. Once again, since Jm is an ideal in R, we can say that Jm is
generated by the finite set of polynomials, {fmj}, such that each polynomial’s degree is less
than or equal to m. Finally, define I′ be the ideal generated by polynomials {fmj} and fi.

We claim I′ = I. Suppose not i.e suppose there exists elements in I that are not in I′. Let g
be the minimal element such that g ∈ I, g ̸∈ I′.
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Case 1: deg(g) > N. Then, there exists polynomials Qi such that
∑

i Qifi has the same
leading term as g. Therefore, deg(g –

∑
i Qifi) < deg(g). Clearly, g –

∑
i Qifi is in I′. But

since g is the minimal element and deg(g –
∑

i Qifi) < deg(g), therefore g –
∑

i Qifi ∈ I′,
which implies g ∈ I′.

Case 2: m := deg(g) ≤ N. Then, there exists polynomials Qj such that
∑

j Qjfmj and g have
the same leading term. Using a similar argument, we get that g ∈ I′.

This has the following interesting implication:

Theorem 2. An algebraic set is the intersection of a finite number of hypersurfaces.

Proof. Let V(I) be an algebraic set. We prove that I is finitely generated since that implies
V(I) = V(f1, ..., fr) = ∩r

i=1V(fi). Given k is a field, k is a Noetherian ring and by the Hilbert
Basis Theorem, k[x] is also Noetherian. Therefore, the ideal I in k[x] is finitely generated.

Corollary 3. k[x1, ..., xn] is a Noetherian ring for any field k.

Proof. Follows from the Hilbert Basis Theorem.

We have some other useful corollaries:

- Any descending chain of subvarieties of An must stabilize i.e if V1 ⊃ V2 ⊃ V3 · · · , then
there exists N such that VN = VN+1 = · · · .

- There exists a finite subset B ⊂ A such that V(A) = V(B).

Exercise:

Define

R[[x]] = {f(x) =
∞∑

n=0

anxn : an ∈ R}.

Prove (1) Given f ∈ R[[x]], f(x) =
∑∞

n=0 anxn and suppose there exists b0 s.t a0b0 = 1. Then,
there exists g ∈ R[[x]] s.t fg = 1. (2) Given R is Noetherian, R[[x]] is also Noetherian. Hint:
Similar proof to Theorem 1, but use trailing coefficient (coefficient of the smallest power) instead of
leading coefficient.
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3 Module-finite, Ring-finite, Field extensions

Definition 2. R-Module.

Let R be a ring. Let M be an abelian group (M, +). Then, an R-module is M with multi-
plication R × M → M such that for any a, b ∈ R, m ∈ M, (a + b)m = am + bm, a(m + n) =
am + an, (ab)m = a(bm), 1Rm = m.

Definition 3. Submodule.

A submodule N is a subgroup of R-module, M, such that an ∈ N for any a ∈ R, n ∈ N.

One can check that for any m ∈ M, 0Rm = 0M by noting that 0Rm = (x–x)m = xm–xm = 0M
for any x ∈ R, m ∈ M. Also, the submodule N of an R-module is an R-module itself.

Definition 4. Submodule generated by S.

Let S := {s1, s2, ...} be a set of elements of the R-module M. Then the submodule generated
by S is {

∑
i risi|ri ∈ R, si ∈ S}.

When S is finite, we denote the submodule generated by S as
∑

i Rsi.

Definition 5. Finiteness conditions of subrings of a ring.

Let S be a ring and let R be a subring of S.

(1) S is module-finite over R if S is finitely-generated as an R-module i.e S =
∑n

i=1 Rvi
where v1, ..., vn ∈ S. More explicitly, S = {

∑n
i=1 rivi : ri ∈ R}, for v1, ..., vn ∈ S fixed.

(2) S is ring-finite over R if S = R[v1, ..., vn] = {
∑

i aiv
i1
1 · · ·vin

n |ai ∈ R} where v1, ..., vn ∈ S.

(3) S is a finitely-generated field extension of R if S and R are fields and S = R(v1, ..., vn)
(the quotient field of R[v1, ..., vn]) where v1, ..., vn ∈ S.

(Recall: the definition of field extension. Firstly, given A is a field, then a subset B ⊆ A is a subfield
if it contains 1 and it is closed under addition and multiplication and taking the inverse of non-zero
elements of B. Given B is a subfield of A, we call A a field extension of B.)

Properties:

1. If S is module-finite over R, then S is ring-finite over R. (This is straightforwardly seen
from the definitions)

2. If L = K(x), then L is a finitely-generated field extension of K but L is not ring-finite over
K.
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Proof. Using the definition, L is a finitely generated field extension of K and so K(X) is
a finitely-generated field extension of K. Now, suppose L is ring-finite over K. Then,
L = K[v1, ..., vn] and so K(x) = K[v1, ..., vn], where v1, ..., vn ∈ k(x).

Then, there exists si
ti

∈ K(X) that generate L where i = 1, ..., n. Define p := 1/q where
q is an irreducible polynomial that has a higher degree than all ti’s. Then, as p ∈ K(X),
p = h

t
e1
1 ···ten

n
. Since q has a higher degree than all the ti’s, we see that p cannot be equal to

1
q .

Definition 6. Integral elements

Let R be a subring of the ring S. Then, v ∈ S is integral over R if there exists a monic
polynomial f = xn + a1xn–1 + · · · + an ∈ R[x] such that f(v) = 0 and ai ∈ R. If R and S are
fields, we say v is algebraic over R.

When all elements of S is integral over R, we say S is integral over R. When S and R are
fields and S is integral over R, we call S an algebraic extension of R.

Theorem 4. Let R be a subring over an integral domain S and let v ∈ S. Then, the follow-
ing are equivalent:

(1) v is integral over R.

(2) R[v] is module-finite over R.

(3) There exists a subring R′ of S such that R′ contains R[v] and it is module-finite over R.

Proof. We see (2) implies (3) readily. Now, (1) implies (2): Suppose v is integral over R
with the monic polynomial f(x) = xn + a1xn–1 + ... + an. Then, f(v) = 0 =⇒ vn ∈

∑n–1
i=0 Rvi.

Therefore, for any integer m, vm ∈
∑n–1

i=0 Rvi. This implies R[v] is module-finite over R.

Lastly, (3) implies (1) as follows: Suppose R′ is module-finite over R. Then, R′ =
∑

Rwi,
where wi ∈ R′. Then, vwi ∈ R[v] ⊂ R′, so vwi

∑
j aijwj where aij ∈ R. Now, vwi – vwi = 0

implies
∑n

j=1 δijvwj – vwi = 0 which then implies
∑n

j=1(δijv – aij)wj = 0 (here δij = 1{i = j}.
Write this in matrix notation and consider these equations in the quotient field of S and
note than (w1, ..., wn) is a non-trivial solution to these equations (as we see, they give 0).
Therefore, det(δijv – aij) = 0 from which we get vn + a1vn–1 + .... + an = 0. Therefore, v is
integral over R.

Corollary 5. The set of elements of S that are integral over R is a subring of R that contains
R.
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Proof. Suppose a, b are elements in S that are integral over R. Now. b is integral over R
implies b is integral over R[a] as R ⊂ R[a]. Therefore, by the previous theorem, R[a, b] is
module-finite over R. Then by the previous theorem a + b, a – b, ab ∈ R[a, b] and so they
are all integral over R.

We will need one result from linear algebra: if A = (rij) is an n × n matrix over R and V
is a column vector s.t AV = 0, then det(A)V = 0. This is because det(A)V = det(A)InV =
adj(A)AV = 0

We will require the following results:

Theorem 6. Suppose an integral domain S is ring-finite over R. Then, S is module-finite
over R if and only if S is integral over R.

Proof. For the forward direction: suppose the generators of S are s1, ..., sn (where we take
s1 = 1 because we enlarge the set of generators as we please as long as it’s finite) so
S =

∑n
i=1 Rsi. Then, for any s ∈ S, we can write s as s = r1s1 + · · · + rnsn.

Now, ssi =
∑n

j=1 rijsj because ssi ∈ S so can be written as a linear combination of si. Then,
let In be the n × n identity matrix, V is the n dimensional column vectors where Vi = si
and B = (rij). Then, we can write these equations as sIV = BV =⇒ (sI – B)V = 0. Then,
det(sI – B)V = 0. However, v1 = s1 = 1, so det(sI – B) = 0 which implies s is the root of a
characteristic polynomial of B over R so s is integral over R.

Conversely, suppose S is integral over R and we are told that S is ring-finite over R i.e
S = R[s1, ..., sn]. Then, for each si ∈ S, we have a monic polynomial from which we
can write, after rearranging ski

i = a1,is
ki–1
i + · · · + aki–1,isi + aki,i. Therefore, ski

i is in the

submodule of S generated by {si, · · · , ski–1
i } i.e sm

i is in this submodule for any m. Now,
we know S is ring-finite over R with s1, ..., sn as the generators. Now, the direct sum of the
submodules (as we saw for each si) is also a finitely generated as an R-module and so S is
itself module-finite over R.

Theorem 7. Let L be a field and let k be an algebraically closed subfield of L. Then an
element of L that is algebraic over k is in k. Furthermore, an algebraically closed field has
no module-finite field extension except itself.

Proof. Proof of the first part - suppose p ∈ L that is algebraic over k. Therefore, pn +
a1pn–1 + · · · + an = 0 with ai ∈ k. This is a polynomial in k[x] with a root, so by definition
of algebraic closure, p ∈ k.

Now, we prove the second part. Suppose L is module-finite over k. Then, by the previous
theorem, L is integral over k. Then, by the first part L = k.
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Lastly,

Theorem 8. Let k be a field. Let L = k(x) be the field of rational functions over k. Then, (a)
any element of L that is integral over k[x] is also in k[x]. (b) There is no non-zero element
f ∈ k[x] such that ∀z ∈ L, fnz is integral over k[x] for some n > 0.

Proof. (a) p is integral over k[x] implies there exists the following polynomial pn +a1pn–1 +
.... = 0. Now, since p ∈ k(x), we may write it as p = s

t where s, t ∈ k[x], t ̸= 0. Then, we
get sn + a1sn–1t + · · · + antn = 0. Rearranging, we get sn = –a1sn–1t – · · · – antn. Since t
divides the right hand side, t divides s. This means, s/t is a polynomial in k[x]. Therefore,
p ∈ k[x].

(b) Suppose, not. Let f be such a function. Let p(x) ∈ k[x] such that p(x) does not divide fm

for any m. Set z = 1
p , so z ∈ L = k(x). Then, fnz = fn

p is integral over k[x]. This means, there

exists ai ∈ k[x] such that ( fn

p )d +
∑d–1

i=1 ai(
fn

p )i = 0. From this, we get fnd =
∑d–1

i=1 aipd–ifin.

Since p divides the right hand side, we get that p divides fnd which contradicts our defi-
nition of p.
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4 Hilbert’s Nullstellensatz

First, we prove the following:

Theorem 9. (Zariski) If a field L is ring-finite over a subfield k, then L is module finite
(and, hence, algebraic) over k.

Note that L is module finite over k if and only if L is integral over k which means L is
algebraic over k.

Proof. Suppose L is ring-finite over k. Then, L = k[v1, ..., vn] where vi ∈ L. We proceed by
induction.

Suppose n = 1. We have that k is a subfield of L and L = k[v]. Let ψ : k[x] → L be a
homomorphism that takes x to v. Now ker(ψ) = (f) for some f since k[x] is a principal
ideal domain. Then, k[x]/(f) ∼= k[v] by the first isomorphism theorem. This implies (f) is
prime (since k[v] is an integral domain).

Now, if f = 0. Then k[x] ∼= k[v], so L ∼= k[x]. However, by the second property following
definition 5, this cannot be true. Therefore, f ̸= 0.

Given f ̸= 0, we can assume f is monic. Then, (f) prime implies f is irreducible and (f) is
a maximal ideal (check Dummit and Foote). This means, k[v] ∼= k[x]/(f) is a field (check
Dummit and Foote). Therefore, k[v] = k(v). Since f(v) = 0, so v is algebraic over k and so,
by theorem 4, L = k[v] is module-finite over k. This concludes the proof for n = 1.

Now, for the inductive step, assume true for n – 1 i.e k[v1, ..., vn–1] is module-finite over k.
Let L = k1[v2, ..., vn] where k1 = k(v1). Then, by the inductive hypothesis, k1[v2, · · · , vn]
is module-finite over k1.

We show that v1 is algebraic over k which would say k[v1] is module-finite over k conclud-
ing the proof. Suppose, v1 is not algebraic over k. Then, using the inductive hypothesis,
for each i = 2, ..., n, we have an equation vni

i + ai1vni–1
i + · · · = 0 where aij ∈ k1.

Let a ∈ k[v1] such that a is a multiple of all the denominators of aij ∈ k(v1). We get
avni

i + aai1(av1)ni–1 + · · · = 0. Then, by corollary 5, for any z ∈ L = k[v1, · · · , vn], there
exists N such that aNz is integral over k[v1] (since the set of integral elements forms a
subring). Since this holds for any z ∈ L, this also holds for any z ∈ k(v1). But by theorem
8, this is impossible. This gives us the contradiction.

Assume k is algebraically closed.
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Theorem 10. (Nullstellensatz Version I) If I is a proper ideal in k[x1, ..., xn], then V(I) ̸= ∅.

Proof. For any ideal I, there exists a maximal ideal J containing I (since we are assuming
our ring has an identity 1 ̸= 0, see Dummit and Foote). So, for simplicity, we assume I is
the maximal ideal itself since V(J) ⊂ V(I). Then, L = k[x1, · · · , xn]/I is a field (since I is
maximal, see Dummit and Foote) and k is an algebraically closed subfield of L. Note that
there is a ring-homomorphism from k[x1, ..., xn] onto L, which is the identity. This means,
L is ring-finite over k. Then, by theorem 9, L is module-finite over k. Then, by theorem 7,
L = k i.e k = k[x1, ..., xn]/I.

Now, since k = L, in particular this means k ∼= k[x1, ..., xn]/I. Suppose xi ∈ k[x1, ..., xn] is
mapped to ai by the homormorphism ψ whose kernel is I. Then, xi – ai is mapped to 0, so
xi – ai ∈ I. Now, note that (x1 – a1, ..., xn – an) is a maximal ideal as one can easily verify
and it contains I, so I = (x1 – a1, ..., xn – an). So, (a1, ..., an) ∈ V(I). Therefore, V(I) ̸= ∅.

The fact that every maximal ideal in the polynomial ring over n variables is of the form
(x1 – a1, ..., xn – an) is a very important thing to remember. In fact, we will often use the
fact that points in affine varieties correspond to maximal ideals made rigorous in the
following:

Lemma 11. There is a natural bijection between a point a ∈ An and k-algebra homomor-
phisms k[x1, · · · , xn] → k. We say the point a corresponds to the maximal ideal defined
by the kernel of this homomorphism.

Proof. Let ϕ : k[x1, ..., xn] → k be a k-algebra homomorphism defined by ϕ(xi) = ai, so xi –
ai ∈ ker(ϕ). Given ϕ is surjective (since it’s k-algebra homomorphism), k[x1, ..., xn]/ker(ϕ) ∼=
k so ker(ϕ) is a maximal ideal.

We recall some definitions before moving to Hilbert’s Nullstellensatz. The radical of an
ideal I in R is

√
I := {a ∈ R : an ∈ I, for somen ∈ Z, n > 0}. It can be easily shown that

√
I is

an ideal itself and I ⊆
√

I. I is called a radical ideal if I =
√

I.

For any ideal I in k[x1...xn], V(I) = V(
√

I). To see this, note that I ⊆
√

I implies V(
√

I) ⊆ V(I).
Conversely, let v ∈ V(I) and let f ∈

√
I. Then, fn ∈ I for some n > 0. This implies fn(v) = 0

which implies f(v) = 0 as k has no zero divisor. Therefore, v ∈ V(
√

I).

Lastly,
√

I ⊂ I(V(I)). To see this, suppose s ∈
√

I. Then, sn ∈ I for some n. Now, let v ∈ V(I).
Then, sn(v) = 0 implies s(v) = 0, so s ∈ I(V(I)).

Now, we prove Hilbert’s Nullstellensatz:

14



Theorem 12. (Hilbert’s Nullstellensatz) Let I be an ideal in k[x1, ..., xn] where k is alge-
braically closed. Then, I(V(I)) =

√
I.

Proof. We already know
√

I ⊂ I(V(I)). So, we only need to prove the other direction. Let I =
(f1, ..., fr) where fi ∈ k[x1, ..., xn]. Suppose, G ∈ I(V(f1, ..., fr)). Define J := (f1, ..., fr, xn+1G –
1) ⊂ k[x1, ..., xn, xn+1]. Then, V(J) ⊂ An

k is ∅ since G is 0 whenever all fi are 0 and therefore,
xn+1G – 1 ̸= 0 at those points.

Since V(J) = ∅, J is not a proper ideal by the previous theorem. Therefore, J = k[x1, · · · , xn+1].
So, 1 ∈ J (check Dummit and Foote; an ideal in R is all of R iff it contains a unit). So
1 =

∑
i ai(x1, ..., xn+1)fi + b(x1, .., xn+1)(xn+1G – 1).

In particular, if xn+1 = 1
G , then, 1 =

∑
i aifi + b(1 – 1) =

∑
i aifi. Therefore, GN = GN∑

i aifi,
so GN ∈ (I). Therefore, G ∈

√
I. Therefore, I(V(I)) ⊆

√
I.

This has a series of interesting applications.

Corollary 13. If I is a radical ideal in k[x1, ..., xn], then I(V(I)) = I. Therefore, there is a
one-to-one correspondence between radical ideals and algebraic sets.

Corollary 14. If I is a prime ideal, then V(I) is irreducible. There is a one-to-one correspon-
dence between prime ideals and irreducible algebraic sets. The maximal ideals correspond
to points.

Corollary 15. Let F be a non-constant polynomial in k[x1, · · · , xn] with the irreducible
decomposition of F being F = Fn1

1 Fn2
2 · · · Fnr

r . Then, V(F) = V(F1) ∪ · · · ∪ V(Fr) is the de-
composition of V(F) into irreducible components and I(V(F)) = (F1 · · · Fr). Therefore, there
is a one-to-one correspondence between irreducible polynomials F ∈ k[x1, · · · , xn] (up to
multiplication by a non-zero element of k) and irreducible hypersurfaces in An

k.

Corollary 16. Let I be an ideal in k[x1, · · · , xn]. Then, V(I) is a finite set if and only if
k[x1, · · · , xn]/I is a finite dimensional vector space over k. If this occurs, then, the number
of points in V(I) is at most dimk(k[x1, · · · , xn]/I).

Proof. Let p1, · · · , pr ∈ V(I). Choose f1, · · · , fr ∈ k[x1, · · · , xn] such that fi(pj) = 0 if i ̸= j
and fi(pi) = 1 and let f̄i be the residue class of fi. Now, if

∑
i λif̄i = 0 with λi ∈ k, then,∑

i λifi ∈ I. Therefore, λj = (
∑

i λifi)(pj) = 0. Therefore, f̄i are linearly independent over k.
So r ≤ dimk(k[x1, · · · , xn]/I).

Conversely, suppose V(I) = (p1, · · · , pr) and so is finite. Let pi = (a1i, · · · , a1n) and define
fj :=

∏r
i=1(xj – aij), j = 1, · · · , n. Then, fj ∈ I(V(I)), so for all j, fN

j ∈ I for some large

15



enough N > 0. Now, taking I-residues, f̄j
N = 0. By expanding fN

j , we get that x̄j
rN is

a k-linear combination of 1̄, x̄j, · · · , x̄j
rN–1. So, for all s, x̄j

s is a k-linear combination of
1̄, x̄j, · · · , x̄j

rN–1. Therefore, the set {x̄1
m1 , · · · , x̄n

mn : mi < rN} generates k[x1, · · · , xn]/I as
a vector space over k.

Definition 7. Reduced Rings. A ring R is called reduced if fN = 0 ∈ R implies f = 0.

Next, we find irreducible decompositions of algebraic sets of an affine space.

16



5 Irreducible Components of Algebraic Sets

So far, we have seen polynomials and the varieties defined over them. Now, we bring in
topological invariants.

Definition 8. Irreducible decomposition of a set. Let V ∈ An
k be an algebraic set. Then, V

is reducible if V = V1 ∪ V2 where V1, V2 are non-empty, algebraic sets in An
k i.e Vi ̸= V for

i = 1, 2. If V is not irreducible, we call it reducible.

Theorem 17. The algebraic set V is irreducible if and only if I(V) is prime.

Proof. Suppose, V is irreducible. Now, suppose for contradiction, I(V) is not prime. There-
fore, by definition of prime, there exists f1f2 ∈ I(V) such that f1 ̸∈ I(V) and f2 ̸∈ I(V). Now,
V = (V ∩ V(f1)) ∪ (V ∩ V(f2)) and V ∩ V(fi) ⊂ V, V ∩ V(fi) ̸= V- to see this, note that for any
p ∈ V such that p is a zero of f1f2, p has to be a root of either f1 or f2 since fi belong to an
integral domain, therefore, p ∈ (V ∩ V(f1)) ∪ (V ∩ V(f2)) (the other direction is obvious).
Then, V = (V∩V(f1))∪ (V∩V(f2)) is decomposition of V which means V is not irreducible
- contradiction.

Conversely, suppose I(V) is prime. For contradiction, suppose V is reducible with V =
V1 ∪ V2, Vi non-empty. Then, consider fi ∈ I(Vi) such that fi ̸∈ V. Clearly, f1f2 ∈ I(V), so
I(V) is not prime - contradiction.

Corollary 18. The affine space An
k is irreducible if k is infinite.

Theorem 19. Let A be a non-empty collection of ideals in a Noetherian ring R. Then, A
has a maximal ideal i.e an ideal I such that I ∈ A and no other ideal in A contains I.

Proof. Given our collection of ideals, A, choose an ideal I0 ∈ A. Then, define A1 = {I ∈ A :
I0 ⊊ I} and I1 ∈ A1, A2 = {I ∈ A : I1 ⊊ I} and I2 ∈ A2 and so on. Then, the statement in the
theorem is equivalent to saying that there exists positive integer n such that An is empty
since that would mean there exists no ideal containing In–1. Suppose this is not true. Then,
with I := ∪∞

n=0In, since R is Noetherian, therefore there exists f1, ..., fm that generates the
ideal I where each fi ∈ In for n sufficiently large. But since the generates are all in In, I = In
and so In′ = In for any n′ > n (since I = ∪∞

n=0In by definition) - contradiction.

We finally prove the main result. Note that this is pretty closely tied to the Hilbert Ba-
sis Theorem which says that every algebraic set is the intersection of a finite number of
algebraic sets/hypersurfaces:

Theorem 20. Let V be an algebraic set in An
k. Then, there exists unique, irreducible alge-

braic sets V1, ..., Vr such that V = V1 ∪ V2 · · · ∪ Vr and Vi ⊊ Vi for any i ̸= j.

17



Proof. Proving this statement is equivalent to disproving that F is non-empty where F :=
{algebraic setV ∈ An

k : Vis not the union of finitely many irreducible algebraic sets}.

Suppose, F is not empty. Let V ∈ F such that V is the minimal member of F i.e V cannot
be written as the union of sets in F .

Now, since V ∈ F , V is reducible (if V is irreducible, then it is trivially the union of 1
irreducible subsets). Since V is reducible, V = V1∪V2 where Vi ̸= ∅. Since V is the minimal
member of F , Vi ̸∈ F . Since Vi ̸∈ F , it is the union of finitely many irreducible algebraic
sets, so let Vi = Vi1 ∪ Vi2 · · · ∪ Vimi . Then, V = ∪i,jVij, so V ̸∈ F . So, we have shown that
V can be written as V = V1 ∪ · · · ∪ Vm where each Vi is irreducible. First, remove any
Vi such that Vi ⊂ Vj. Now we prove uniqueness. Suppose V = W1 ∪ · · ·Wm be another
such decomposition. Then, Vi = ∪j(Wj ∩ Vi). Now, Wj ∩ Vi = Vi since otherwise we will
have found a decomposition of the irreducible set Vi. Therefore, Vi ⊂ Wj(i) for some j(i).
Similarly, by symmetry, Wj(i) ⊂ Vk for some k. But then, Vi ⊂ Vk implies i = k and so
Vi = Wj(i). Continuing this for each i ∈ {1, ..., m}, we get that the two decompositions are
equal.

Furthermore, we use the following terms:

Definition 9. An ideal I ⊂ k[x1, ..., xn] set-theoretically defines a variety V if V = V(I). An
ideal J ⊂ An scheme-theoretically defines a variety V if J = I(V).

Here’s a pretty straightforward result:

Theorem 21. For an affine variety X, if f1, ..., fm scheme-theoretically define X, then V(I(X)) =
X

Two affine-varities can be isomorphic in the usual sense using the language of polynomial
maps:

Definition 10. Isomorphic affine varieties. Two affine varieties V ⊂ An and W ⊂ Am

are isomorphic if there exists polynomial maps f : V → W and g : W → V such that
f ◦ g = g ◦ f = id.

Theorem 22. Let f and g be two polynomials in k[x, y] with no common factors. Then,
V(f, g) is a finite set of points.

Proof. Check [1].
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6 Zariski Topology

We will require this following result:

Theorem 23. Let Z ⊂ An be an affine variety and let x ∈ An – Z. Then, there exists
f ∈ k[x1, ..., xn] such that f(Z) = 0 and f(x) ̸= 0.

Proof. Suppose this is not true. Then, f ∈ I(Z) =⇒ f ∈ I(Z ∪ {x}). Then, I(Z) = I(Z ∪ {x}).
Therefore, Z = Z ∪ {x} since V(I(X)) = X. This is contradiction since this implies x ∈ Z.

Now, we move on to define a topology on An.

Definition 11. Let X ⊆ An be an affine variety. Then, Z ⊆ X is closed if Z ⊆ X ⊆ An is an
affine variety i.e there exists f1, ..., fm ∈ k[x1, ..., xn] such that Z = V(f1, ..., fm) ⊂ X.

This forms a topology. ∅ is closed as ∅ = V(1). X itself is closed since X = V(g1, ..., gm) by
definition (since it’s an affine variety). Now, suppose {Zi}i∈A are affine varieties. Then,
∩i∈AZi = V(

∑
i I(Zi)). Lastly, V(f1, ..., fm) ∪ V(h1, ..., hr) = V(

∑
i,j fihj).

Given any affine variety has a unique irreducible, this gives us topological invariants. This
allows us to move between worlds:

{Polynomials} ↔ {Varieties} → {Topological Invariants}

Theorem 24. The pre-image of an affine variety under a polynomial map p : V → W is
a variety. Therefore, in Zariski topology, polynomial maps/morphisms between varieties
are continuous.

Proof. Let V ⊆ An
k, W ⊆ Am

k be affine varieties. Write p as p = (p1, ..., pm) where the image
of each pi is in k. Now, suppose Z := V(g1, ..., gm) ⊆ W is closed. We show f–1(Z) is closed.
f–1(Z) = {x = (x1, ..., xn) ∈ V : (p1(x), ..., pm(x) ∈ Z} = {x ∈ V : gj(f(x)) = 0, ∀j} =⇒ f–1(Z) is
closed.

For an example, consider the Zariski topology on A1
k and let V(f1, ..., fm) ⊂ A1

k. Now, given
K is a field, k[x] is a principal ideal domain so (f1, ..., fm) = (g) for some g ∈ k[x]. Then, the
closed subset i.e variety of A1

k is of the form V(g) = {x ∈ k : g(x) = 0} which is finite since g
is a polynomial of some degree. This means that the closed subsets of A1

k are of the form
∅,A1

k and finite subsets of A1
k.
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Definition 12. Coordinate Ring. Let X ⊂ An be an affine variety. The coordinate ring of
functions on V is

O(X) := k[x1, .., xn]/I(X)

is the quotient ring of polynomials in n-variables. Intuitively, two polynomials in O(X) are
equivalent as long as they have the same values at every point of V.

Note that, for a point a = (a1, ..., an) ∈ X and f ∈ O(X), the value of f(a) ∈ k is well-defined.
This is because for any f′ ∈ I(X), f′(a) = 0, so the value f(a) is independent of our choice of
function from I(V).

The coordinate ring O(X) can be thought of as a ring of polynomials such that we only
care about their values on X since we identify two polynomials that are equal on X to be
the same.

We can always write, using first isomorphism theorem, O(X) = k[x1, .., xn]/I(X) ∼= k by
sending each f ∈ I(X) to 0 which means (x1, ..., xn) ∈ X (by properties of homomorphisms).

Definition 13. Reduced ring. A ring R is called reduced if, given x ∈ R with xm = 0 for
some m > 0, we can conclude x = 0.

Lemma 25. The coordinate ring O(X) is always reduced.

This is because if fm = 0 in O(X), then fm(x) = 0 for all x ∈ V which implies f(x) = 0 for all
x ∈ V and so f = 0 ∈ O(X).

Lemma 26. O(X) is a finitely generated k-algebra.

Definition 14. First, we define V(f)X := V(f) ∩ X where X ⊂ An is an affine variety. Now,
we define basic closed sets of X be sets of the form V(f)X. Note that V({fi}i∈I) = ∩iV(fi).
Any closed set in the Zariski topology is a union of basic closed sets for some set of func-
tions. On the other hand, the basic open sets of X are of the form D(f)X := {x ∈ X : f(x) ̸= 0}
i.e D(f)X = X – V(f). Any open set in Zariski topology is the union of some basic open sets.

Note that, by Hilbert Basis Theorem, every closed subset of X is a finite intersection of
basic closed sets. Similarly, every open set is a finite union of basic open sets.

There is a particularly local nature of algebraic geometry as evident by the following:

Corollary 27. Let U ⊆ X be a basic open subset of an affine variety X. Then, for any x ∈ U,
there exists a basic open subset D(f) ⊂ X and f ∈ k[x1, ..., xn] such that x ∈ D(f) ⊆ U.

Proof. Let Z = X–U be the closed subset of X i.e an affine variety. Then, Theorem 15 allows
us to conclude the statement.
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Some more useful corollaries:

Corollary 28. (Hausdorff property of Zariski topology) Let x, y ∈ X such that x ̸= y. There
exists an open subset Ux containing x but not y.

This can be proven using the theorem at the start of this section.

Corollary 29. D(1) = V, D(0) = ∅, D(fg) = D(f) ∩ D(g).

Definition 15. Zariski Closure. For a subset X of V, the Zariski closure of X in V is the
minimal closed subset of V that contains X which we denote by X̄ ⊆ V.

Proposition 30. S is irreducible if and only if S̄ ⊆ V is irreducible.
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7 Coordinate Rings, Varieties, Morphisms

7.1 Coordinate rings as k-algebra homomorphisms

First, we recall that given V ⊂ An, W ⊂ Am are varieties, f : V → W is a polynomial map
if f(x1, ..., xn) = (f1(x1, ..., xn), · · · , fm(x1, ..., xn)), fi ∈ k[x1, ..., xn] and f(V) ⊂ W.

Furthermore, given the definition of coordinate ring and I(An
k) = 0, O(An

k = k[x1, · · · , xn]
is the true coordinate ring of An

k.

One can easily prove that the coordinate ring O(V) is Noetherian.

Definition 16. k-algebra. Let k be a field (i.e a commutative division ring). A ring R is a
k-algebra if k ⊆ Z(R) := {x ∈ R : xy = yx,∀y ∈ R} and the identity of k is the same as the
identity of R.

Note, Z(R) is the center of the ring R.

Definition 17. Finitely generated k-algebra. A finitely generated k-algebra is a ring that
is isomorphic to a quotient of a polynomial ring k[x1, ..., xn]/I.

Equivalently, a ring R is a finitely-generated k-algebra if R is generated as a ring by k with
some finite set r1, ..., rn of elements of R i.e k[r1, ..., rn].

These definitions are equivalent. Suppose, R is a finitely generated k-algebra i.e R =
k[r1, ..., rn]. Then, by the first isomorphism theorem, R ∼= k[r1, ..., rn]/I. Conversely, sup-
pose R ∼= k[r1, .., rn]/I i.e φ : k[r1, .., rn]/I → R. Then, with π : k[r1, ..., rn] → k[r1, ..., rn]/I,
f := φ ◦ π : k[x1, ..., xn] → R is a surjective homomorphism. Since f is a homomor-
phism, f(p(x1, ..., xn)) = p(f(x1), f(x2), ..., f(xn)) and so all elements of R is a polynomial
in f(x1), ..., f(xn) with coefficients in R so they are generated by these n elements as a k-
algebra.

Definition 18. Mork(R, S). Let R and S be k-algebras. Then, ψ : R → S is a k-algebra
homomorphism, ψ ∈ Mork(R, S) if ψ is a ring homomorphism that is identity on k.

Note that if ϕ : R → k is a k-algebra homomorphism, then ϕ is surjective.

Theorem 31. O(X) ∼= Map(X,A1). Here, Map(X,A1) is a commutative k-algebra under
addition and multiplication on A1. Furthermore, O(X)m ∼= Map(X,Am)

Proof. Let φ : O(X) → Map(X,A1). Then, define φ(f)(a) = f(a) for any a ∈ X. This is a ho-
momorphism by design. To show surjectivity, by definition of Map(X,A1), f ∈ Map(X,A1)
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implies f(x) ∈ k[x1, ..., xn] so f̄ ∈ O(X) is mapped to f. To show injectivity, suppose f ∈ O(X)
is mapped to 0. Then, f(x) = 0 for all x ∈ X. This means, f ∈ I(X) implying f = 0 in O(X).

Corollary 32. Given X and Y are affine varieties, X ∼= Y implies O(X) ∼= O(Y).

With these results in mind, we note that a key idea in algebraic geometry is to characterize
an affine variety X by the ring of functions O(X) ∼= Map(X,A1).

Furthermore, just as before, a point p in a variety X corresponds to a maximal ideal in
R = O(X), mp = {f ∈ O(X) : f(p) = 0} ⊆ O(X). This can be seen by considering the k-algebra
homomorphism ϕ : O(X) → k such that ϕ(xi) = pi. Then, mp = ker(ϕ).

7.2 Pullback, relationship between Map(V, W) and Mork(O(W), O(V))

Definition 19. Given X ∈ An, Y ∈ Am are affine varieties, p ∈ Map(X, Y), define p∗ to be
the map p∗ : Mork(O(Y), O(X)), p∗(f) = f ◦ p.

Note that p is a map from X to Y whereas p∗ is a morphism from O(Y) to O(X). In light of
the previous theorem, we can also say p∗ : Map(Y,A1 → Map(X,A1).

Next, we prove that there is a one-to-one correspondence between p and p∗:

Theorem 33. Let V ⊂ An and W ⊂ Am be affine varieties. There exists a natural 1-1
correspondence between Map(V, W) and Mork(O(W), O(V)).

Proof. Define p and p∗ as in the definition of pullbacks. We claim that the map p −→ p∗ is
injective.

Let s, s′ ∈ Map(V, W) with s = (f1, ..., fm) and s′ = (f′1, ..., f′m). We want to show that if
s∗ = s′∗ i.e s∗(f) = s′∗(f) for all f ∈ O(W), then s = s′. To see this, note that fi = xi ◦ s =
s∗(x1) = s′∗(xi) = xi ◦ s′ = f′i. Given fi = f′i for all i = 1, ..., m, therefore s = s′.

Now we claim that the map p −→ p∗ is surjective. Let λ ∈ Mork(O(W), O(V)). We construct
a map s ∈ Map(V, W) such that λ = s∗.

Let fi ∈ k[x1, ..., xn] such that λ(yi) = fi for i = 1, ..., m. Deine s : An → Am such
that s(a1, ...., an) = (f1(a1, ..., an), ..., fm(a1, ..., an)). Now, if g ∈ I(W), then g(f1, ..., fm) =
g(λ(y1), ...,λ(ym)) = λg(y1, ..., ym) = 0, where we got the last inequality by noting that
g ∈ I(W) so it is 0 in O(W) and λ is a homomorphism so it must send 0s to 0s. Note that
for any g ∈ k[y1, ..., ym], λ(g) = g(f1, ..., fm); to see this, write g(y1, ..., ym) =

∑
i ciy

i1
1 · · · yim

m ,
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so λ(g(y1, ..., ym)) = λ(
∑

i ciy
i1
1 · · · yim

m ) =
∑

i λ(ciy
i1
1 · · · yim

m ) = λ(ci)λ(yi1
1 · · · yim

m ) =∑
i ciλ(yi1

1 · · · yim
m ) = g(f1, ...., fm)

This means, for any a = (a1, ..., an) ∈ V, g(s(a)) = g(f1(a), ..., fm(a)) = 0. Therefore, all
g ∈ I(W) vanish on s(a), a ∈ V. So, s(a) ∈ W,∀a ∈ V. This means s restricted to V is a
polynomial map i.e s|V ∈ Map(V, W).

Note that λ = s∗ on y1, ..., ym because if s = (f1, ..., fm), then s∗(yi) = yi ◦ s = yi ◦ (f1, ..., fm) =
yi ◦ (λ(y1), ...,λ(ym)) = λ(yi). Since they agree on y1, ..., ym, they agree on all of O(W).

7.3 Product of varieties

Now, we can naturally discover the notion of tensor products by considering the product
of varieties:

Theorem 34. Let k be any field. Let X, Y be two affine varieties. Then, the coordinate ring
of X × Y is O(X × Y) = O(X) ⊗k O(Y).

Proof. Let X ⊂ An. Let Y ⊂ Am. Let X = V(I1), Y = V(I2). Let I1 = I(X) and I2 = I(X)
(ignoring the radicals for ease of notation). We claim I(X × Y) = I(X) ⊗k k[y1, ..., ym] +
k[x1, ..., xn] ⊗ I(Y). We prove this as follows:

Let f ∈ I(X × Y), f =
∑t

i=1 fi ⊗ gi, where fi ∈ k[x1, ..., xn], gi ∈ k[y1, ..., ym]. Then, for any
(x, y) ∈ X × Y,

∑t
i=1 fi ⊗ gi(x, y) =

∑t
i=1 fi(x)gi(y) = 0. We do induction on t. If t = 1, then,

f(x)g(y) = 0 so either f1 ∈ I(X) or g1 ∈ I(Y). Now for general t, if gj(y) = 0 for all y ∈ Y and
j, then, f ∈ k[x1, ..., xn] ⊗k I(Y). Otherwise, we may fine y0 ∈ Y and j such that gj(y0) ̸= 0.

Then, fj(x) =
–
∑

i̸=j fi(x)gi(y0)
gj(y0) , ∀x ∈ X. Therefore, fj –

–
∑

i̸=j figi(y0)
gj(y0) ∈ I(X) ⊗k k[y1, ..., ym] (by

inductive hypothesis) and so f =
∑

i̸=j fig′i + I(X) ⊗k k[y1, ..., ym]. By inducive hypothesis,∑
i̸=j fig′j ∈ I(X)⊗k k[y1, .., ym]+k[x1, .., xn]⊗k I(Y), so f ∈ I(X)⊗k k[y1, .., ym]+k[x1, .., xn]⊗k

I(Y). This completes the proof of the claim.

Now, we have O(X×Y) = k[x1, ..., xn]×k[y1, ..., ym]/(I(X×Y)) = k[x1, ..., xn]×k[y1, ..., ym]/(I(X)⊗k
k[y1, .., ym] + k[x1, .., xn] ⊗k I(Y)) = O(X) ⊗k O(Y).

Definition 20. Kernel ideal. For a k-algebra homomorphism ϕ : R → S, the ideal ker(ϕ) =
{x ∈ R : phi(x) = 0} is called the kernel ideal.

Definition 21. ma. Given a = (a1, ..., an),

ma = (x1 – a1, ...., xn – an)
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.

One can check that ma is the kernel of the k-algebra homomorphism ψ : k[x1, ..., xn] → k
such that ψ(xi) = ai.

Therefore, ma = I({a1, ..., an}).

Theorem 35. For I ⊂ k[x1, · · · , xn], the vanishing ideal I(V(I)) is given by the intersection
of all kernels of k-algebra homorphisms k[x1, · · · , xn] → k such that I is mapped to 0 i.e

I(V(I)) = ∩a∈V(I)ma

Proof. This is pretty straightforward. Suppose f ∈ I(V(I)). Then, f(a) = 0,∀a ∈ V(I).
Therefore, f ∈ ma, ∀a ∈ V(I). Therefore, f ∈ ∩a∈V(I)ma. On the other hand, suppose
f ∈ ∩a∈V(I)ma. Then, f(a) = 0 for all a ∈ V(I). So, f ∈ I(V(I)).

Corollary 36. A finitely generated k-algebra R is the coordinate ring of an affine variety if
and only if for all f ̸= 0, f ∈ R, there exists a k-algebra homomorphism ϕ : R → k such that
ϕ(f) ̸= 0.

Proof. Suppose R is the coordinate ring of an affine variety, i.e R = O(X). Let X := V(I).
Then, I(X) = I(V(I)) = ∩a∈V(I)ma. Now, if f ̸= 0 in R = O(X), then f ̸∈ I(V(I)) implying
f ̸∈ ma for some a ∈ V(I). Therefore, there exists some k-algebra homomorphism ψ :
k[x1, ...., xn] → k such that ψ(xi) = ai and ψ(f) ̸= 0.

Conversely, suppose for any f ̸= 0, f ∈ R, there exists a k-algebra homomorphism ψ : R →
k such that ψ(f) ̸= 0.

Now, suppose f ̸= 0. Then, f ̸∈ ma for some a ∈ V := V(I). So, f ∈ ma for all a ∈ V = V(I)
implies f = 0. So, f ∈ I(V(I)) implies f = 0. Therefore, I(V(I)) = {0} and we can write
R = O(V) i.e a coordinate ring of the affine variety V.

With these results, we can redefine coordinate ring: a finitely generated k-algebra R is a
coordinate ring if for any f ̸= 0, f ∈ R, there exists a k-algebra homomorphism ψ : R → k
such that ψ(f) ̸= 0.

Theorem 37. Let p : V → W be a morphism between 2 varieties where p = (p1, ..., pm).
Let w ∈ W be a point with the vanishing ideal mw = (x – w1, ..., x – wm) ⊂ I(W), then the
fiber p–1(w) ⊂ V is defined by p∗(mw) = (p1(x) – w1, ..., pm(x) – wm) ⊂ O(V).
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7.4 MSpec(R) and abstract varieties

We can now define three abstract structures that are ubiquitous in algebraic geometry:

Definition 22. Maximal space MSpec(R). For R a coordinate ring, the maximal space
MSpec(R) of R is the set of k-algebra homomorphisms p : R → k which we call points. For
f ∈ R, we say f vanishes at point p if p(f) = 0.

Let’s make this more clear. Let R = k[x1, ..., xn]/I(X). Let φ : R → k be a k-algebra
homomorphism where I is the kernel. Then, we can visualize φ as:

k[x1, . . . , xn] k[x1, . . . , xn]/I

k

φ ∈ MSpec(k[x1, .., xn]/I)

With this in mind, we note that we can associate an element of MSpec(k[x1, ..., xn]/I) with
a point in (a1, · · · , an) ∈ X in k. This is because φ(fi) = 0,∀fi ∈ I, so xi → ai ∈ k and since
xi generate all of the quotient ring, therefore, we can send all polynomials to k.

Therefore, we will often write:

MSpec(k[x1, ..., xn]/(f1, .., fm)) = {(a1, ..., an) ∈ An : fi(a1, .., an) = 0,∀i = 1, .., r}

We can turn MSpec(R) into a topological space by letting the basic closed sets be VMSpec(R)(f) =
{p ∈ Mspec(R) : p(f) = 0}.

Definition 23. Abstract affine variety and ring of functions. A pair (V, R) is an abstract
affine variety if R is a coordinate ring and V is identified with the topological space
MSpec(R).

We often just write V instead of (V, R). We call R the ring of functions on V.

Here’s an intuition for why abstract affine varieties are required. We want to study poly-
nomials in R = O(X) = k[x1, · · · , xn]. We can move to the geometric world by studying the
affine variety of a polynomial in R. Given a polynomial, we can fully determine the set
of zeros and therefore attain the variety. But given a just variety in the geometric world
which is just a set of elements in An, we cannot hope to recover R = O(X). Therefore, in
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an almost silly manner, we remember the data by just letting the abstract affine variety be
(V, R).

Definition 24. Morphism of abstract varieties. For (V, R) and (W, S) abstract varieties,
the morphism of (V, R) and (W, S) is a k-algebra homomorphism ψ∗ : W → V with the
induced map ψ : V = MSpec(R) → W = MSpec(S).

7.5 Localization

Theorem 38. (Rabinowitch Trick) The solutions (a1, ..., an) to f1 = f2 = · · · = fn = 0 and
f ̸= 0 are in bijection with the solutions (a1, · · · , an, an+1) to f1 = f2 = · · · = fn = 0 and
xn+1f(x1, · · · , xn) – 1 = 0.

Proof. The bijections take a1, · · · , an to a1, ...an, 1
f(a1,...,an) and (reverse) a1, ...an, an+1 to a1, ...an.

Now, we define something central to a lot of the techniques.

Definition 25. Localization of ring R at element g ∈ R. We define

Rg := R[x]/(xg – 1).

Because xg – 1 = 0 in Rg, we refer to x as g–1 (here g is a unit).

Since x = g–1 in Rg, therefore, we will often write Rg as R[g–1]. Localization is very
useful; for example, one can notice that we had used localization in the proof of Hilbert’s
Nullstellensatz (although we used it as an arbitrary "trick" without really looking deep
into the construction).

Here are some immediate properties of the localization of a ring at an element.

Lemma 39. For any ring R, we have:
(a) Every element of Rg can be written as rg–i for some r ∈ R and i ≥ 0.
(b) rg–i = sg–i ∈ Rg if and only if gN(r – s) = 0 ∈ Rg for some N.
(c) A ring map Rg → S is the same as a ring map R → S such that Im(g) ∈ S× i.e g is
mapped to a unit in S. In other words,

Mor(Rg, S) = {φ ∈ Mor(R, S) : φ(g) ∈ S×}

(d) The map R → Rg is an isomorphism exactly when g ∈ R×.
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Proof. (a) Suppose s ∈ Rg. Then, s = f(x). Given f is a polynomial, for i large enough, sgi

not have any x (since x = g–1), so sgi = r ∈ R. This implies the result.
(b) Suppose gN(r – s) = 0. Then, since g is a unit, this implies r – s = 0, so r = s and
rg–i = sg–i. Conversely, suppose rg–i = sg–i. Then, (r – s)g–i = 0. Since we are operating in
Rg, this implies (r – s)g–i = (1 – xg)(a0 + a1x + · · · + anxn). Expanding the right hand side
and comparing the coefficients of x0, x1, · · · , xn, we see that a0 = r – s, a1 = (r – s)g and an =
(r – s)gn. Now, comparing the coefficient of xn+1, we get that ang = 0 =⇒ (r – s)gn+1 = 0.
// (c) A ring map ψ : Rg → S is the same as a map ϕ : R → S such that ϕ sends (xg – 1) to
0. But then, ϕ(x)ϕ(g) – ϕ(1) = 0, so ϕ(x) = ϕ(g)–1 = ϕ(g–1). Therefore, g has to be a unit. If g
is not a unit, these maps cannot be equivalent.
(d) If g is a unit, then R[x]/(xg – 1) = R[x](x – g–1) = R. Conversely, if g is not a unit, then
R is not isomorphic to Rg.

Now, we get the following result:

Theorem 40. If V ⊂ An is a variety with cooridnate ring R, then, {(v, f(v)–1) : v ∈ V, f(v) ̸=
0} ⊂ An+1

k is a variety with coordiante ring Rf and isomorphic to D(f) ⊆ An.

Proof. First, we prove that for R = O(V), Rf is a coordinate ring. Given R is the quotient
of a polynomial ring, it is a finitely generated algebra. Now, using corollary 22, Rf is a
coordinate ring if and only if for all g ∈ Rf, g ̸= 0, there exists a k-algebra homomorphism
q : Rf → k such that q(g) ̸= 0. Let g = hf–i for i ≥ 0, h ∈ R, g ̸= 0 in Rf. Then, hf ̸= 0, since
otherwise g = 0. Now, we know there exists a k-algebra homomorphism p : R := O(v) → k
such that p(hf) = p(h)p(f) ̸= 0. As p(f) ̸= 0, therefore, we get a map from Rf → k such that
p(g) ̸= 0. Therefore, Rf is a coordinate ring.

Furthermore, MSpec(Rf) = D(f). To see this, suppose V = (f1, ..., fm), so
Rf = (k[x1, ..., xn]/(f1, ..., fm))f = (k[x1, ..., xn]/(f1, ..., fm))[f–1]. Therefore, MSpec(Rf) is asso-
ciated with points such that (f1, ..., fm) are 0 but 1/f(x1, ..., xn) is not 0. This is the same as
D(f)V. Furthermore, D(f) can be considered an affine variety too by considering it as
V(f1, ..., fm, xf – 1).

Using the language of localization, we can also determine what ideals are radical which is
important in light of Hilbert’s Nullstellensatz:

Theorem 41. I ⊂ R is radical if and only if R/I is reduced if and only if (R/I)f = 0 implies
f = 0

We define a few more important objects.
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Definition 26. R is a Jacobson ring, if every radical ideal I is the intersection of these
maximal ideals containing it.

Definition 27. A quasi-affine variety is an open subset of an affine variety.

As we close this section, we note that we now have a better understanding of what closed
and open subsets are in Zariski topology:
Suppose k is an algebraically closed field and V ⊂ An is an irreducible affine variety. Then,
let R := O(V) be our coordinate ring. Given I ⊂ R is an ideal, V(I) is a variety, V(I) ∩ V is a
closed subset and with V(I), we can associate the coordinate ring R/I(V(I)).
On the other hand, let g ∈ R, then D(g) ⊂ V is a basic open set and with it, we can
associate the coordinate ring Rg in k[x1, ..., xn][1/g] = k[x1, ..., xn, xn+1]/(xn+1 – 1

f(x1,...,xn) ) =

O(V(xn+1 – 1
f(x1,...,xn) )) . Later on, we will see that we can study algebraic geometry of open

subsets too using sheaves.

7.6 Coordinate Changes

Definition 28. Change of coordinates. Let T = (T1, .., Tm) be a morphism/polynomial
map from An to Am. Let f be a polynomial in k[x1, ..., xm]. Then, define

fT = T̃(f) = f(T1, ..., Tm).

Given I ⊂ Am is an ideal and V is an algebraic set in Am, IT ⊂ An will be the ideal in
k[x1, ..., xn] generated by {fT : f ∈ I}. VT is the algebraic set T–1(V) = V(IT) where I = I(V).
So if V is the hypersurface of f, then VT is the hypersurface of fT given fT is not constant.

Definition 29. Affine Change of coordinates. An affine change of coordiantes on An is a
polynomial map T = (T1, . . . , Tn) : An → An where each Ti is a polynomial of degree 1
and T is one-to-one and onto. If Ti =

∑
ij aijxj + ai0, then T = T′′ ◦ T′ where T′ is a linear

map (T′
i =
∑

ij aij) and T′′ is a translation (T′′
i = xi + ai0). Translations are invertible. So T is

one-to-one and onto if and only if T′ is invertible.

If T and U are affine change of coordinates on An, then so are T ◦ U and T–1.

7.7 Morphisms

This is mostly from Hartshorne’s text.
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Let Y be a quasi-affine variety in An i.e it is an open subset of an irreducible affine variety.

Definition 30. Regular at point p. A function f : Y → k is regular at p ∈ Y if there exists
an open neighbourhood U such that p ∈ U ⊆ Y and g, h ∈ A := k[x1, ..., xn] such that h is
not zero anywhere on U and f = g

h on U.

Definition 31. Regular function. A function f is regular on Y if it regular at every point of
Y.

Lemma 42. A regular function is continuous when k is identified with A1
k in its Zariski

topology.

Proof. We show that f–1 of a closed set is closed. Any closed set of A1
k is a finite set of point.

So we show f–1(a) = {p ∈ Y : f(p) = a} is closed for any a ∈ k. We know a subset Z ⊆ Y
is closed iff Y can be covered by open subsets U such that Z ∩ U is closed in U for each U
(proving this is simple - consider Y – Z which we can writer as (Y – Z) ∩ (∪Ui) = ∩(Ui – Z).
Now, let U be an open set on which f can be represented as g/h s.t h is not 0 anywhere on
U. Then, f–1(a) ∩ U = {p ∈ U : g(p)/h(p) = a}. Now, g(p)/h(p) = a iff (g – ah)(p) = 0. So
f–1(a) ∩ U = V(g – ah) ∩ U which is closed. Therefore, f–1(a) is closed in Y.
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8 Schemes

(This chapter is from Scholze’s lectures)

Let V be an algebraic set. Then, we can define the coordinate ring over V i.e O(V). Now,
consider Map(V, k) which we can consider to be a ring with pointwise addition and mul-
tiplication in k. Then,

O(X) = im(k[x1, ..., xn] → Map(V, k)).

We also express V(I) where I is an ideal by writing

V(I) = Homk–alg(k[x1, ...., xn]/I, k)

Assume, for this section, that we are working with commutative rings with an identity
and that all maps are ring homomorphisms.

Definition 32. Spec A. Let A be a ring. Then Spec A is defined as the collection of all
ring homomorphisms A → k where k is some field and we identify two maps A → k and
A → k′ to be equivalent if we have the following commutative diagram:

A k

k’

Proposition 43. The map Spec A → { prime ideals in A } defined by (f : A → k) → ker(f)
is a well-defined bijection.

Proof. If f : A → k is a map where k is a field, then ker(f) is a proper ideal in A and if we
have xy ∈ ker(f) then, 0 = f(xy) = f(x)f(y) so x ∈ ker(f) or y ∈ ker(f) given k is a field.
Therefore, ker(f) is also prime. Now, we have the following diagram

A k

k’

f

f’
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The map k → k′ must be injective so ker(f) = ker(f′) and so our map is well-defined.

Next, we show bijection. We do so by constructing an inverse map. If p ⊆ A is a prime
ideal, then A/p is an integral domain, so we have the inclusion A/p ↪→ Frac(A/p) := k(p)
from A/p into a field. This gives us the composition

fp : A → A/p ↪→ k(p)

which is a map to a field with ker(fp) = p. This gives us surjectivity of fp. For any map
f : A → k, we can factor the map f through ker(f) = p and then the map A/p ↪→ k can
be factored through Frac(A/p) which makes f equivalent to fp. Then, we have two maps
f : A → k and f′ : A → k′ with ker(f) = ker(f′) and so f = f′.

(Here, Frac(A) of an integral domain is a field of elements a/b where b is not 0 with the
mod relation a/b ∼ a′/b′ if ab′ = a′b. The addition and multiplication is defined in the
usual way)

With this, we redefine/define the following:

Definition 33. We define Spec A as the set of all prime ideals in A called the spectrum of
the ring A. Furthermore, for any x ∈ Spec A, we let px be the prime ideal which is x, then

k(x) := k(px) = Frac(A/px)

called the residue field of at x. For x ∈ Spec A, we have a natural map A → k(x) which
maps g → g(x). In other words, we want to consider any element g ∈ A as a function on
Spec A, whose value at x ∈ Spec A is g(x) ∈ k(x). In other words, for each g ∈ A, we can
map x ∈ Spec A to g(x) ∈ k(x) which is the same as viewing g modulo px inside the field
of fractions of A/p.

Definition 34. Given a ring A, we define SpecmaxA as the subset of Spec A consisting of
all the maximal ideals of A.

Proposition 44. Let k be an algebraically closed field and let A be a finitely generated
k-algebra so A = k[x1, ..., xn]/a. Then,

kn ⊇ V(a) = Homk–alg(A, k) → SpecmaxA ⊆ Spec(A)

the map which sends f : A → k to ker(f) is a bijection.

Proof. Given f : A → k, we know ker(f) is a maximal ideal and for any maximal ideal
m ⊆ A, we saw in the proof of Nullstellensatz, that k ∼= A/m. Therefore, for any maximal
ideal m ⊆ A, we have a map of k-algebras A → A/m ∼= k.
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Proposition 45. Given f : A → B, then Spec f defined by q → f–1(q) is a well-defined map.

Proof. if x, y ∈ A and xy ∈ f–1(q), then f(xy) = f(x)f(y) ∈ q. So, either f(x) ∈ q or f(y) ∈ q
and so either x or y is in f–1(q). Therefore, f–1(q) is a prime ideal in A.
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9 Dimensions

Most of this section is from Hartshorne’s book and Zhiyu Zhang’s lectures.

9.1 Krull Dimension

We need a notion of dimension on topological spaces which we can hope to use on Zariski
topology. We have some expectations. We would want An to be of dimension n. If X1 and
X2 are closed, then dim(X1)∩dim(X2) = dim(X1)+dim(X2). Dimension should be such that
it can be understood locally through local rings or fractional fields. Given Y1, Y2 are closed
subvarieties of X, we expect dim(Y1 ∩ Y2) = dim(Y1) + dim(Y2) – dim(X). For f ∈ O(X),
then dim(V(f)) = dim(X) – 1 for general f.

For motivation, we look at linear algebra. For a vector space V, we can define dim(V) =
max{k : ∃V0 ⊊ V1 ⊊ · · · ⊊ Vk, linear subspaces of V}.

We can use the same idea to define dimension for topological spaces. (recall: irreducible
closed subsets of X are closed subsets Y ⊆ X such that Y cannot be written as the union of
two closed subsets Y1, Y2 such that one of these is empty.)

Definition 35. Krull dimension of a topological space. Given X is a topological space.
Then,

dim(X) = max{k : ∃X0 ⊊ X1 ⊊ · · · ⊊ Xk ⊊ X, Xi irreducible closed subsets in X}.

We set dim(∅) = 0.

Example: dim(A1) = 1 since the irreducible closed subsets are ∅, finite subsets, A1 i.e the
maximal chains look like ∅ ⊂ {p} ⊂ A1.

Definition 36. Equi-dimensional. A topological space X is equidimensional of dimension
n, if any irreducible component of X has the same dimension n.

Example: Let X := {xy = 0} ⊆ A2. This has two irreducible components only - {x = 0} ∼= A1

and {y = 0} ∼= A1. Both the irreducible components are of dimension 1, so X is equi-
dimensional of dimension 1.

With this definition of dimension, we get the following:

Proposition 46. If X ⊆ Y are closed, then dim(X) ≤ dim(Y). If Y is irreducible and X is a
proper closed subset of Y (i.e X ̸= Y is closed), then dim(X) < dim(Y).
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Proof. For the first part, any strictly increasing chain of non-empty irreducible closed sub-
sets of X is also a strictly increasing chain of non-empty irreducible closed subsets of Y. For
the second part, note that we are working with a ring with identity and so every proper
ideal is contained in some maximal ideal (which is also prime).

Given we have defined Zariski topology over affine varieties, we can now use Krull Di-
mension as a notion of dimension over affine varieties.

Definition 37. Krull dimension of an affine variety. Using Zariski topology,

dim(V) = max{k : X0 ⊊ X2 ⊊ · · ·Xk ⊊ V, Xi irreducible closed subsets of V}

Definition 38. Krull dimension of ring. Let R be any ring. The Krull dimension dim(R) is
the maximal length of strict chains of prime ideals of R.

Proposition 47. If X is an affine variety, then dim(X) = 0 if and only if X is finite.

Proof. Write X as the union of irreducible components : X = ∪n
i=1Xi. Then suppose dim(X) =

0. Then, choose x ∈ Xi. Now, given dim(X) = 0, Xi = {xi} and so X is the union of finitely
many points. Conversely, if X is finite, then the topology is discrete and so any subset is
closed. The irreducible closed subsets are points so dim(X) = 0.

We call 1 dimensional varieties algebraic curves. We call 2 dimensional varieties algebraic
surfaces.

Proposition: Let X be an affine algebraic set and let R = O(X). Then, dim(X) = dim(R) =
dim(O(X)).

Proof. If X is an affine algebraic set in An, then the closed irreducible subsets of Y corre-
spond to prime ideals of k[x1, ...., xn] containing I(X). These correspond to prime ideals of
O(X). So, dim(X) is equal to the length of the longest chain of prime ideals of O(X).

The following is from Hartshorne’s text:

Theorem 48. Let Y be a quasi-affine variety (i.e Y ⊂ V where V is an affine variety and Y
is an open set in V), then dim(Y) = dim(Ȳ)

Proposition 49. A Noetherian integral domain A is a UFD if and only if every prime ideal
of height 1 is principal.

Theorem 50. Krull’s Hauptidealsatz. Let A be a Noetherian ring. Let f ∈ A be an element
s.t f is neither a zero divisor nor a unit. Then, every minimal prime ideal p containing f
has height 1.
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Proposition 51. An affine variety Y in An has dimension n – 1 if and only if it is the zero
set Z(f) of a single nonconstant irreducible polynomial in A = k[x1, · · · , xn].

Definition 39. Catenary Rings. A ring R is catenary if for any prime ideals p ⊆ q of R,
any maximal chain p = p0 ⊆ p1 ⊆ · · · ⊆ pe = q has the same length e = e(p, q).

Theorem 52. Let k be a field. Any finitely generated k-algebra R is catenary.

Note: This means k[x1, ..., xn]/I is catenary.

Example: dimAn = n since we have a strictly increasing chain 0 ⊆ A1 ⊆ · · · ⊆ An.

Corollary 53. If Vi ⊂ · · · ⊂ Vj is a maximal chain of irreducible subvarieties of X, then
dimVi+k = dimVi + k.

Now, we define the following:

Definition 40. Algebraically independent and algebraic over. Let L/k be a field extension
(i.e k is a subfield of L). Then, a1, ..., an ∈ L are algebraically independent over k if f ∈
k[x1, · · · , xn] such that f(a1, ..., an) = 0 implies f = 0. Otherwise, a1, ..., an are algebraically
dependent over k. (recall: a ∈ L is algebraic over k if there exists a monic polynomial
f ∈ k[x] such that f(a) = 0)

Definition 41. Transcendence degree.

tr.deg(L/k) := max{r : ∃a1, ..., ar ∈ L algebraically independent over k}.

To get a sense of this, note that dim(k(An)) = n. This is because the maximal set of alge-
braically independent elements of k(An) is of length n. Choose x1, ..., xn ∈ k(An). Then,
p(x1, ..., xn) = 0 implies p = 0 (note that xi are variables here, so p(x1) = 0 would also imply
p is 0). On top of that, if we chose any other f ∈ k(An), we could write it as a combination
of x′is so p(T1, ..., Tn, Tn+1) = f(T1, ..., Tn) – Tn+1 = 0 is a non-zero polynomial that vanishes
at (x1, ..., xn, f).

With this, we have the following:

Theorem 54. Let V be an irreducible affine variety. Let R = O(V).

dim(R) = tr.deg(k(V)).

Note: here we are treating k(V) as a field extension of k.

Sketch of proof: It can be easily seen that tr.deg(k(V)) ≥ dim(R). This is because tr.deg(Frac(R)) ≥
tr.deg(R). Now, consider the number of algebraically independent elements of R. Suppose, x1, ..., xr ∈
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R/P (where P is a prime ideal) are algebraically independent. Then, for any y ̸= 0, y ∈ P, we
have {x1, ..., xr, y} is an algebraically independent set so the number of algebraically independent
elements of R is greater than or equal to the number of prime ideals. Now, we need to show
tr.deg(k(V)) ≤ dim(R). Proving this requires Noether Normalization which we will do later.

Corollary 55.
dim(An) = trdeg(k(x1, ..., xn)/k) = n.

Corollary 56. f : X → Y is a finite and surjective morphism between two affine varieties,
then dim(X) = dim(Y).

Recall: f : X → Y and y ∈ Y. Then, f–1(y) is the fiber of y.

Definition 42. Quasi-finite. Let f : X → Y be a polynomial map between two affine
varieties. Then, f is quasi-finite if the number of elements in the fiber over y ∈ Y is finite
for any y ∈ Y.

Theorem 57. Krull’s Principle Ideal Theorem. If the affine variety V is irreducible and
0 ̸= f ∈ O(V) is not a unit, then all irreducible components Vi of V(f) have dimension
dim(V) – 1.

9.2 Noether Normalization

Lemma 58. Let f ∈ k[x1, ..., xn] where n ≥ 2 be a non-zero polynomial over an infinite field
k. Then, there are elements λ, a1, ..., an=1 ∈ k such that λf(y1+a1yn, · · · , yn–1+an–1yn, yn) ∈
k[y1, ..., yn] is monic in yn.

Proof. Let fd be the homogenous part of f of the highest degree. We have fd(λx1, ...,λxn) =
λdfd(x1, ..., xn) where d is the degree of f. Since k is infinite, we can always fine a1, ..., an–1
such that fd(a1, ..., an–1, 1) ̸= 0. Then, let yj = xj –ajxn for j = 1, 2, ..., n–1 and yn = xn and λ =

fd(a1, ..., an–1, 1)–1. Then, λf(y1 + a1yn, ...., yn–1 + an–1yn, yn) = λfd(a1, ..., an–1, 1)yd
n+lower

order (in degree of yn terms. This is a monic polynomial in yn.

Theorem 59. (Noether Normalization). Let R be a finitely generated algebra over a in-
finite field k with generators x1, ..., xn ∈ R. Then, there exists an injective k-algebra ho-
momorphism ϕ : k[t1, .., tr] → R from a polynomial ring to R such that R is integral over
k[t1, ..., tr].

Proof. Proceed by induction. For n = 1, let t1 = x1. Now suppose n > 1. If x1, ...., xn are
algebraically independent, we can choose ti = xi and the result follows. Now suppose
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there exists some algebraic dependence between the generators x1, ..., xn i.e there exists a
non-zero polynomial f over k such that f(x1, ..., xn) = 0. Let fd be the homogenous part
of the highest degree of f. Then, by the previous lemma, we can fine λ, a1, ..., an–1 such
that λf(y1 + a1yn, · · · , yn–1 + an–1yn, yn) ∈ k[y1, ...yn] is monic in yn. The new coordinates
are then given by y1 = x1 – a1xn, · · · , yn–1 = xn–1 – an–1xn, yn = xn and so λf(x1, ..., xn) =
0. Furthermore, yn is integral over k[y1, ..., yn–1] by the previous lemma. By inductive
hypothesis, there exists an injective algebra homomorphism ϕ : k[t1, ..., tr] → k[y1, ..., yn–1]
s.t k[y1, ..., yn–1] is integral over k[t1, ..., tr]. But yn is integral over k[y1, ..., yn–1] and so yn
is integral over k[t1, ..., tr].

Example 1: Let R = k[x1, x2]/(x1x2 – 1) ∼= k[x, 1
x ]. Then, R is not integral over k[x] - if

1/x were integral over k[x] with the polynomial (1
x )n + a1(x)(1

x )n–1 + · · · + an(x) = 0 with
ai(x) ∈ k[x]. After multiplying both sides by xn–1, we can see that 1

x ∈ k[x] which is
impossible. Let x1 := t1 + t2, x2 := t2, then, R = k[t1, t2]/(t2

2 + t1t2 – 1) and there is injective
map ϕ : k[t1] → R with R integral over k[t1].
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10 Sheaves

10.1 Presheaf, Germs, Stalks and Sheaves

So far, we have studied morphisms from an affine variety X to another affine variety Y.
Now consider any open subset U of X. Now, given a polynomial map f ∈ Map(X, Y), we
would like to localize f i.e f|U ∈ Map(X, Y) where U is an open subset of the affine variety
X. The problem is that U is not affine. However, we know that U is locally covered by
affine varieties, by the local nature of algebraic geometry introduced in the section on
Zariski topology. With this, we can define Map(U,A1) as:

{pD(f) ∈
⋃

D(f)⊆U,f∈O(X)

Map(D(f),A1) : ∀D(f), D(g) ⊆ U, pD(f)|D(f)∩D(g) = pD(g)|D(f)∩D(g).}

Recall that D(f) is isomorphic to {(v, f(v)–1 : v ∈ X, f(v) ̸= 0} and has the coordinate
ring Rf = k[x1, ..., xn][1/f]. Note that if U = D(f) is an affine variety, then our defini-
tion agrees with what we already know. We saw in the section on coordinate rings that
O(X) ∼= Map(X,A1), so O(U) ∼= Map(U,A1).

We define sheaves in a similar way. While this is abstract, there are a few examples to
keep in mind. In differential topology, for any manifold X, we define an atlas and then
we define smooth functions on X using the atlas. Considering X = Rn, here is a more
straightforward example - consider smooth functions on Rn. Then, the sheaf of smooth
functions on X is the data of all smooth functions on open subsets of X. Let U be an open
subset of X - then the ring of smooth functions on U is denoted by O(U). Given V ⊂ U,
we can restrict smooth functions on U to V by resU,V : O(U) → O(V). These restrictions
commute i.e if we have W ⊂ V ⊂ U, we could first restrict a function in O(U) to V and
then restrict that to W but this would be equivalent to directly restriction the function in
O(U) to W.

Now, if we want to do algebraic geometry on a general (possibly open subset) U, we need
to remember all the coordinate rings Map(D(f),A1).

Although sheaves can defined using any category, we will define it using sets or rings.

First, we define the germ of a smooth function:

Definition 43. Germ of a smooth function at p ∈ X. Germs are objects of the form
(f, open set U) such that p ∈ U, f ∈ O(U) with the equivalence (f, U) ∼ (g, V) if there
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exists an open set W ⊂ U, W ⊂ V and p ∈ W such that f|W = g|W i.e resU,Wf = resV,Wg.
Therefore, two germs are equivalent as long as they agree on some open neighbourhood
of p (even though they might disagree elsewhere).

The set of germs is called the stalk at p, denoted by Op.

The stalk is a ring. One can add two germs and get another germ in the stalk: if f is defined
on U and g is defined on V, then f + g is defined on U ∩ V. Also, f + g is well-defined: if f̃
has the same germ as f (i.e f and f̃ agree on some open neighbourhood W of p) and g̃ has
the same germ as g (i.e g and g̃ agree on some open neighbourhood W′ of p), then f̃ + g̃
agrees with f + g on U ∩ V ∩ W ∩ W′.

Furthermore, for p ∈ U, there is a natural map O(U) → Op.

Lastly, Op is a ring itself. Let mp ⊂ Op be the set of germs that vanish at p. These germs
form an ideal since mp is closed under addition and multiplying any element in mp by
any function, the rest is also in mp. This is also a maximal ideal since the quotient ring is
a field.

Definition 44. Presheaf. A presheaf of sets, F , on a topological space X is the following
data:

(1) For each open set U in X, we have F (U) (alternative notations include
F (U) = H0(U, F ) = Γ(U, F ) where F (U) is called the sections or functions over U. When
U is ommitted, we assume we are talking about X i.e F contains sections/functions over
X which are often called the global sections.

(2) For each inclusion U ⊆ V, we have the restriction map:

resV,U : F (V) → F (U).

Given f ∈ F (V), we write f|U = resV,U(f).

We also require two more conditions:
(3) The map resU,U is the identity (as one would expect) resU,U = idF (U)

(4) If U ⊆ V ⊆ W are inclusions of open sets, then restrictions commute as the following
diagram shows:
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F(U) F(V)

F(W)

resU,V

resV,WresU,W

With the notion of a presheaf, we can now generalize our notion of germs and stalks:

Germs and stalks of presheaf: Let F be our presheaf. Then, each germ at p is a section
over some open set containing p such that two sections are equivalent if they agree on
some smaller open neighbourhood of p. Then, the stalk of a presheaf F at a point p is the
set of germs at p and is denoted by Fp i.e

Fp := {(f, open set U) : p ∈ U, f ∈ F (U)}

with the relation (f, U) ∼ (g, V) if ∃W ⊂ U, W ⊂ V, p ∈ W such that resU,Wf = resV,Wg.

Now we finally define sheaf:

Definition 45. Sheaf. A presheaf F is a sheaf if it satisfies two more axioms:

Identity/injectivity axiom. For any open set U, if {Ui}i∈I is an open cover of U and f1, f2 ∈
F (U) with f1|Ui = f2|Ui for all i ∈ I, then f1 = f2.

Gluability axiom. If {Ui}i∈I is an open cover of U, then given fi ∈ F (Ui) for all i such that
fi|Ui∩Uj = fj|Ui∩Uj for all i, j ∈ I, then there exists some f ∈ F (U) such that resU,Uif = fi
for all i.

10.2 Structure Sheaf

Sheaf of functions O on X = MSpec(R). (Recall: given R is an k-algebra (and integral
domain), X = MSpec(R) is the set of all homomorphisms from R to k.) So, X is an affine
variety. The sheaf of functions O on X = MSpec(R) has sections O(U) ⊂ Frac(R) where
f ∈ O(U) if for any p ∈ U, we can write f = g

h , g, h ∈ R and h(p) ̸= 0.

Proposition 60. If R is an integral domain, then O(X = MSpec(R)) = R.

Proof. If f ∈ R, then f = f/1 ∈ O(X) and we know 1 ∈ R does not vanish on any point of
X. So R ⊂ O(X). Now, conversely, suppose f ∈ O(X) ⊂ Frac(R). We want to show f ∈ R.
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Define the ideal of denominators of f to be I := {r ∈ R : rf ∈ R} ⊂ R. Now given f ∈ O(X),
near any p, there exists some h ∈ I where h(p) ̸= 0 and f = g

h . This implies V(I) = ∅. By
Hilbert’s Nullstellensatz, this means I = R and so I = (1), implying f = f/1 ∈ R.

Proposition 61. Let S = k[x1, ..., xn]/I(V). Recall that we can write MSpec(S) as V ⊂ An.
Then, consider any open set U ⊂ MSpec(S) (or U ⊂ V) where U = D(f1, ..., fn). Then,
U = ∪iD(fi). Furthermore, D(f) ∪ D(g) = D(fg).

The proof of this is straightforward.

Proposition 62. Let R be an integral domain with z ∈ R. Then,

O(D(z)) = Rz = {
1

zn f : n ∈ Z≥0, f ∈ R}

Proof. Suppose f ∈ Frac(R) with f ∈ O(D(z)). We want to show that f ∈ Rz. Let I ⊂ R
be the ideal of denominators of f i.e elements r ∈ R with rf ∈ R. Then, near any point
p ̸∈ V(z), we can write f = g

h , h(p) ̸= 0. Therefore, p ̸∈ V(I). Thus, V(I) ⊂ V(z). We know
z ∈ I(V(I)) =⇒ z ∈

√
I (by Nullstellensatz) =⇒ zk ∈ I, k ∈ Z+.

Now, we go back to the question of studying algebraic geometry on not just closed subsets
(i.e affine varieties) but also open subsets. We come to an important sheaf:

Proposition 63. Let k be an algebraically closed field and let R be a finitely generated
k-algebra with f ∈ R. Then, the sheaf over D(f) is given by

O(D(f)) = Rf = R[x]/(xf – 1) = {
a
fn : n ∈ Z≥0, a ∈ R}.

Proof. We assume k is algebraically closed so that we can use Hilbert’s Nullstellensatz. Let
R be the coordinate ring of D(f) and let Ui := D(fi), i = 1, ..., m be a collection of open sets
covering D(f). Then, V(f1, ...., fm) = ∅ in D(f) so by Hilbert’s Nullstellensatz, (f1, ..., fm) = 1.
Now, we check the two axioms of sheaves:

(1) injectivity: we need to show that the map R → ΠiRfi
is injective. Suppose x ∈ R is 0

in every Rfi
. Then, x = a

fN
i

= 0, so fN
i x = 0 (since fi ̸= 0 in Ui) for all i (given N is large

enough). But we know fi are non-zero, so x = 0.

(2) Gluability: Suppose we have xi ∈ Rfi
such that xi = xj ∈ Rfifj

(caution: xi is not
a variable, it’s a section/function over Ui). We want to show there exists f ∈ R such
that f|Ui = xi. To see this, we first write xi = si

f
ni
i

. Now, if we take N large enough,

42



we can write all xi = si
fN
i

. Then, xi = xj implies (sif
N
j – sjf

N
i )fN

i fN
j = 0. Replace si with

si with sif
N
i and fi with f2N

i , we may assume that sifj – sjfi = 0 in R for all i, j. Now,
f ∈

√
(f) =

√
(x1, ..., xm) (since we already argued that (x1, ..., xm) = 1 so it generates (f)),

therefore, we can write fN = c1x1 + · · ·+ cmxm where ci ∈ R. Let a = c1s1 + · · · cmsm. Then,

afi =
∑

j cjsjxi =
∑

j cjxjsi = fNsi. So, a
fN = si

fi
= sif

N
i

f2N
i

= si
fN
i

= xi.

Now, we put this all under a suitable dictionary:

Definition 46. Spec(R). Let R be any ring. Denote by Spec(R) the set of all prime ideals of
R. For any subset T ⊂ R, define Vprime(T) = {p ∈ Spec(R) : ∀f ∈ T, f ∈ p} i.e the set primes
of R that contain T. Similarly, Dprime(T) is the set of primes of R not containing T.

Spec(R) is equipped with its Zariski topology: a subset Z ⊆ Spec(R) is closed if Z = V(I)
for some I ⊂ R

With the last proposition, we have:

Theorem 64. The presheaf of rings O on Spec(R) sending D(f) to O(D(f)) = Rf is a sheaf
ccalled the structure sheaf of Spec(R).

Definition 47. Ringed space. Ring spectrum. A ringed space (X, OX) is a topological space
with a sheaf of rings OX (called structure sheaves). The ring spectrum for any ring R is the
ringed space (Spec(R), O).

Definition 48. Prevariety. A prevariety over k is a ringed space (X, OX) over k such that
the pair (X, OX) is locally isomorphic to ring spetrum of affine varieties.

43



11 Local Rings and Valuations

11.1 Local Rings

We first provide a series of definitions:

Definition 49. Rational Function. Let V be an affine variety and let O(V) be its coordinate
ring. A rational function f on V is an element in k(V) = Frac(O(V)) = Frac(k[x1, ..., xn]/I(V))
i.e f ∈ k(V) can be expressed as f = g/h where h ̸= 0. A rational f is defined at a point
p ∈ V if f =

gp
hp

with gp, hp ∈ R and h(p) ̸= 0.

Definition 50. Birational equivalence. We say two varieties X and Y are birational or
birationally isomorphic if there exists rational maps f : X → Y and g : Y → X such that
f ◦ g = id, g ◦ g = id. If X and Y are irreducible, this is equivalent to k(X) ∼= k(Y).

Definition 51. Ideal of denominators. For f ∈ k(V), we have the ideal of denominators
DenoR(f) = {r ∈ R : rf ⊆ R} ⊆ R. Here R = O(V).

Theorem 65. For an open subset U ⊆ X, the ring of polynomial functions/regular func-
tions O(U) on U can be identified with the subring of Frac(O(X)) consisting of all rational
functions defined on all points of U.

Definition 52. Localization S–1R. Let R be a ring. A subset S ⊂ R is a multiplicative subset
of R if 1 ∈ S and g, h ∈ S =⇒ gh ∈ S. Define the localization S–1R of R at S to be the set
{a/s : a ∈ R, s ∈ S} under the equivalence relation a1/s1 = a2/s2 ↔ ∃s ∈ S, s(a1s2 – a2s1) =
0.

Note that this localization is, at least on face value, defined differently from the definition
of localization before where we had Rf. Fortunately, they are not different:

Example: If S = {fn}n≥0, then S–1R = Rf.

Example: Let q be a prime ideal of R. Then, S = R – q gives Rq := (R – q)–1R which is the
localization of R at q.

Definition 53. Local ring. A ring R is called a local ring if it has a unique maximal ideal.

We now look at two examples of local rings: (1) Rq and (2) Op(V)

Theorem 66. Let R be a ring and q be a prime ideal. Then, Rq(R – q)–1R is a local ring with
maximal ideal qRq.
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Proof. Recall : Rq = (R – q)–1R. First, we claim qRq is a maximal ideal. Note, qRq = q(R –
q)–1R = (R – q)–1qR = (R – q)–1q. This is an ideal because (R – q)–1qR = (R – q)–1q (similarly
for left ideal). Furthermore, qRq ̸= Rq. To do so, we will show that 1 = 1/1 ̸∈ qRq.
Suppose, 1/1 = r/s where r ∈ q, s ∈ R – q. Then, ∃t ∈ R – q s.t (s – r)t = 0 (using the
equivalence relation in localizations), so rt = st. This is impossible as rt ∈ q and st ̸∈ q
(since neither s nor t are in q but q is prime).

Suppose r/s ∈ Rq such that r/s ̸∈ qRq. Then, r ̸∈ q since if it were, then r/s = (r/1)(1/s) ∈
qRq.

Now, s/r ∈ Rq and so r/s is invertible. Therefore, if an ideal contains any element that is
not in qRq, it contains a unit and therefore, the ideal becomes all of R i.e not a maximal
ideal.

We know germs already.

Definition 54. Local ring Op(V). For p ∈ V, we define the local ring Op(V) of V to be the
germs at p (see previous chapter).

Op := {(f, U) : p ∈ U open subset of V, f ∈ O(U) a regular function}

with the equivalence relation: (f, U) ∼ (g, V) if ∃W ⊂ U, W ⊂ V, p ∈ W such that resU,Wf =
resV,Wg.

(Recall: V an affine variety, U ⊂ V open, we have O(U) ⊂ Frac(R) where f ∈ O(U) if for
any x ∈ U, we can write f = g

h , g, h ∈ R and h(x) ̸= 0.)

Basically, Op(V) is the set of rational functions on V that are defined at p.

The set of points z ∈ V where a rational function f is not defined is called the pole set of f.

Furthermore, define
mp = (t – p)Op

and define
Mp = (Vanishing ideal of p ∈ V) ⊂ O(V)

Example: Consider p ∈ A1. Then, Op = {f(t)/g(t) : g(p) ̸= 0} ⊂ k(t). Then, we identify
O×

p = {f(t)/g(t) : f(p) ̸= 0, g(p) ̸= 0} and the complement Op\O×
p = {f(t)/g(t) : f(p) =

0, g(p) ̸= 0} = (t – p)Op. Any proper ideal I ⊂ Op does not contain a unit so it must be
contained in (t – p)Op and so (t – p)Op is the unique maximal ideal mp ⊂ Op.

We have the following immediate properties:
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Proposition 67. (1) The pole set of a rational function is an algebraic subset of V.
(2) O(V) = ∩p∈VOp(V).

Proof. (1) Suppose V ⊆ An. For G ∈ k[x1, .., xn], let Ḡ be the residue of G in O(V). Now,
let f ∈ k(V) and let Jf = {G ∈ k[x1, .., xn] : Ḡf ∈ O(V)}. Then, Jf is an ideal of k[x1, .., xn]
containing I(V) and the points of V(Jf) are the points where f is not defined.
(2) Suppose f ∈ ∩p∈VOp(V), then V(Jf) = ∅ (since if f is defined everywhere in V, then
Ḡ ̸= 0 =⇒ G is not 0 on V. Then, by Nullstellensatz, 1 ∈ Jf, so 1 · f = f ∈ O(V).

Lemma 68. The following conditions on a ring R are equivalent:
(1) The set of non-units in R forms an ideal.
(2) R has a unique maximal ideal that contains every proper ideal of R.

Proof. If m = {non-units of R}. Then, every proper ideal of R is contained in m (since
proper ideal does not contain units).

Proposition 69. Spec(Rq) = {p ⊆ Rq : p ⊆ q}

Theorem 70. The following are true for any point p ∈ V:
(1) Op is a Noetherian local ring with unique maximal ideal mp ⊂ Op of pairs (U, f) with
f(p) = 0 and mp is generated by the image of the vanishing ideal Mp ⊂ O(V) of p.
(2) For any k-algebra, a homomorphism Op → R is the same as a homomorphism O(V) →
R with all elements in O(V)\Mp sent to units i.e Op is the localization S–1O(V) for the
multiplicatively closed set S = O(V)\Mp. (Note: these are backslashes i.e complements, not
quotients)
(3) If V1, ..., Vi are the irreducible components of V containing p, then the map O(V) → Op
factors O(V) → O(V1 ∪ · · · ∪ Vi) → Op.

(4) O(V)/Mi
p = Op/mi

p for all i with Mj
p/Mi

p = mj
p/mi

p and TpV := (Mp/M2
p)∨ =

(mp/m2
p)∨.

Proof. (1) Consider a germ in Op, (f, U), that does not vanish at p when restricted (U ∩
D(f), f|U∩D(f)). Then, (U∩D(f), f|U∩D(f)) has an inverse (U∩D(f), f|–1

U∩D(f)) and ideals that
contain points not in mp (i.e contains regular functions that do not vanish at p) become all
of Op. Therefore, mp is the unique maximal ideal.

Now, suppose (D(g), f
g ) is a germ in mp. Then this is equivalent up to a unit to (D(g), f)

where f ∈ O(V). Therefore, mp is generated by Mp.

Now Op is Noetherian. Suppose (f1/g1) ⊂ (f1/g1, f2/g2) ⊂ · · · ⊂ Op is an increasing
sequence of ideals. This is equivalent to the sequence (f1) ⊂ (f1, f2) ⊂ · · · ⊂ Op - this
sequence stabilizes because O(V) is Noetherian.
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(2) Follows from definition.

(3) There is a map O(V) → Op/mi
p with Mi

p in the kernel. The other way, note that
O(V)\Mp are all units in O(V)\Mi

p so we have a map Op → O(V)/Mi
p and it is easy to see

that mi
p lies in the kernel.
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12 Discrete Valuation Rings

We will now see a very useful application of local rings. We will require the following:

Proposition 71. Let R be an integral domain that is not a field. Then, the following are
equivalent:
(1) R is Noetherian and local (i.e has a unique maximal ideal), and the maximal ideal is
principal.
(2) There is an irreducible element t ∈ R s.t every non-zero z ∈ R may be written uniquely
in the form z = utn where u is a unit in R, and n is a non-negative integer.

Proof. (1) implies (2): let m be a maximal ideal and let t be a generator for m. Suppose
utn = vtm for n ≥ m and u, v are units. Then, utn–m = v is a unit, so n = m (since t is
irreducible) and u = v. Thus the expression z = utn is unique. Now we show there exists
such an expression. Assume that z is not a unit. Now, every proper ideal is contained in
a maximal ideal, so z = z1t for some z1 ∈ R. If z1 is a unit, we are done. Otherwise, write
z1 = z2t. Continuing this way, we get an infinite sequence z1, z2, ... with zi = zi+1t. Given
R is Noetherian, the chain of ideals (z1) ⊂ (z2) ⊂⊂ · · · must have a maximal member so
(zn) = (zn+1) for some n. Then, zn+1 = vzn and so zn = vtzn and vt = 1. But t is not a unit.

(2) m = (t) is the set of non-units. Then, the only ideals in R are the principal ideals (tn)
where n is a non-negative integer so R is a PID. PIDs are Noetherian.

Definition 55. Discrete valuation ring. A ring satisfying the conditions of the previous
proposition is called a discrete valuation ring (DVR). Therefore, if ring R is a DVR, then:
(1) R is Noetherian and has a unique maximal ideal which is principal
(2) There exists an irreducible element t ∈ R s.t for any non-zero z ∈ R, we can write it
uniquely in the form z = utn where u ∈ R is a unit and n ∈ Z≥0
An element t as in the second condition is called a uniformizing parameter for R. Any
other uniformizing parameter is of the form ut where u is a unit in R.

Definition 56. Order function on DVR. Let K be the quotient field of R which is a DVR.
Then, when t is fixed, any non-zero element z ∈ K has a unique expression z = utn (u is a
unit in R and n ∈ Z). The exponent n is called the order of z and is written n = ord(z) with
ord(0) = ∞. Then, R = {z ∈ K : ord(z) ≥ 0} and m = {z ∈ K : ord(z) ≥ 0} is the maximal
ideal in R.

Now, we motivate why discrete valuation ring/order of vanishing is important

Consider the curve y = x2. we want to assign an "order of vanishing" at (1, 1) for every
function in k[x, y]/(y – x2). We define the order of vanishing at (1, 1) to be the largest i
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such that f ∈ (x–1, y–1)i. Here’s the intuition - f is the sum of products of i linear functions
vanishing at 1 and each linear function vanishes to order at least 1.

Let us compute some orders of vanishing:
(1) Order of vanishing of y at (1, 1): y(1, 1) = 1 ̸= 0, so y ̸∈ (x – 1, y – 1) so the order of
vanishing is 0.
(2) y – x2 = 0 ∈ (x – 1, y – 1)i for all i, so the order is ∞.
(3) y – 1 ∈ (x – 1, y – 1) so the order is ≥ 1 although it is unclear if the order is exactly 1.
(4) 2x – y – 1 = –(x – 1)2 ∈ (x – 1, y – 1)2 so the order is ≥ 2 although it is unclear if
2x – y – 1 ∈ (x – 1, y – 1)3.
(5) (2x – y – 1)2 = –(x – 1)4 ∈ (x – 1, y – 1)4 so the order is ≥ 4 although it is unclear if
(2x – y – 1)2 ∈ (x – 1, y – 1)5.

We then generalize discrete valuation:

Definition 57. Discrete valuation. A discrete valuation of a field K is a function v : K →
Z ∪ {∞} such that
(1) v(x) = ∞ exactly when x = 0,
(2) v is surjective,
(3) v(fg) = v(f) + v(g),
(4) v(f + g) ≥ min(v(f), v(g)) and if v(f) ̸= v(g), this is an equality.

If L is a subfield of K, then v(L×) = 0.

We let Ov be the elements of K where v(f) ≥ 0.

Ov := {x ∈ K : v(x) ≥ 0}.

We call v(x) the order of vanishing of x.

Lastly, we define the maximal ideal

mv := {x ∈ K : v(x) ≥ 1}

For v : K → Z ∪ {∞} a discrete valuation of field K, Ov/mv ∼= k.
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13 Forms, product of Rings and operations on ideals

These sections are from Foulton [1]. Writing these down here for completeness.

13.1 Forms

(Treating forms to be the same as homogenous polynomials)

Let R be an integral domain. If f ∈ R[x1, .., xn+1] is a form, we define f∗ ∈ R[x1, .., xn] by
setting f∗ = f(x1, ..., xn, 1). Conversely, for any polynomial f ∈ R[x1, ..., xn] of degree d,
write f = f0 + · · · + fd where fi is a form of degree i and define f∗ ∈ R[x1, ..., xn, xn+1] by
setting

f∗ := xd
n+1f0 + xd–1

n+1f1 + · · · + fd

= xd
n+1f(x1/xn+1, · · · , xn/xn+1)

and so, f∗ is a form of degree d.

So, f∗ gives us a way to make a form into a polynomial in lower dimensions while f∗ gives us a way
to transform a polynomial into a form in higher dimensions.

Proposition 72. (1) (fg)∗ = f∗g∗, and (fg)∗ = f∗g∗

(2) if f ̸= 0 and r is the highest power of xn+1 that divides f, then xr
n+1(f∗)∗ = f. Also,

(f∗)∗ = f
(3) (f + g)∗ = f∗ + g∗, and xt

n+1(f + g)∗ = xr
n+1f∗ + xs

n+1g∗ where r = deg(g), s = deg(f) and
t = r + s – deg(f + g)

Proof. Proving just the first:
(1)

(fg)∗ = (fg)(x1, ..., xn, 1)
= f(x1, ..., xn, 1)g(x1, ..., xn, 1)
= f∗g∗

(fg)∗ = xd
n+1(fg)(x1/xn+1, ..., xn/xn+1)

= xdf
n+1f(x1/xn+1, ..., xn/xn+1)xdgg(x1/xn+1, ..., xn/xn+1)

= f∗g∗
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where df + dg = d, df degree of f.
(2) Suppose f ∈ R[x1, ..., xn+1] is a form i.e f = fd. Suppose r is the highest power such
that xr

n+1 that divides f so f(x1, ..., xn+1) =
∑r

i=1 xi
n+1gd–i(x1, ..., xn, xn+1). So f(x1, ..., xn, 1) =∑r

i=1 gd–i(x1, ..., xn, 1).

xr
n+1(f∗)∗ = xr

n+1(f(x1, ..., xn, 1))∗

= xr
n+1

(
xd–r

n+1f(x1/xn+1, · · · , xn/xn+1, 1/xn+1)
)

= xr
n+1f(x1/xn+1, ..., xn/xn+1, 1/xn+1)

= f(x1, ..., xn+1)

The rest can also be proven straightforwardly.

Corollary 73. Up to power of xn+1, factoring a form f ∈ R[x1, ..., x)n] is the same as factor-
ing f∗ ∈ R[x1, ..., xn]. In particular, if f ∈ k[x, y] is a form and k is algebraically closed then
f factors into a product of linear factors.

Proof. Use previous proposition’s part 1 and 2 to prove the first part. For the second, let y
be st y does not divide g, then let f = yrg. Then, f∗ = g∗ = ϵ

∏
(x –λi) since k is algebraically

closed, so f = ϵyr∏(x – λiy)

13.2 Direct Products of Rings

The cartesian product of rings is a ring with the operations (a1, ..., an) + (b1, ..., bn) =
(a1 + b1, .., an + bn) and (a1, ..., an)(b1, ..., bn) = (a1b1, · · · , anbn). This ring is called the
direct product of R1, · · · , Rn, denoted by

∏n
i=1 Ri.

Let πj :
∏n

i=1 Ri → Rj which takes a1, · · · , an to aj be the natural projection map which can
easily be shown to be a ring homomorphism.

Given any ring R and ring homomorphisms ψi : R → Ri for i = 1, · · · , n, there is a unique
ring homomorphism ψ : R →

∏n
i=1 Ri such that πi ◦ ψ = ψi. In particular, if a field k is a

subring of each Ri, k may be regarded as a subring of
∏n

i=1 Ri.

Proposition 74. Let I be an ideal in k[x1, ..., xn] where k is algebraically closed. Suppose
V(I) = {p1, .., pN} is finite. Let Oi := Opi

(An). Then, there is a natural isomorphism of
k[x1, ..., xn]/I with

∏N
i=1 Oi/IOi.

The proof of this can be found in [1].
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Corollary 75.

dimk(k[x1, ..., xn]/I) =
N∑

i=1

dimk(Oi/IOi).

Corollary 76. If V(I) = {p}, then k[x1, ..., xn]/I is isomorphic to Op(An)/IOp(An).
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14 Affine plane curves and Intersection number

14.1 Preliminaries

Definition 58. Affine plane curve. An affine plane curve is the set of points in A2 at which
f ∈ k[x, y] vanishes. Therefore, the affine plane curve X := {(x, y) : f(x, y) = 0}.

Alternatively, we say that an affine plane curve is an equivalence class of non-constant
polynomials under the equivalence relation of polynomials in k[x, y]: f ∼ g iff f = λg
where λ ∈ k.

Intuition: This definition of affine plane curve using equivalence relation makes sense be-
cause if the affine plane curve is defined by X = {(x, y) : x2 + y2 = 0}. Then, the polynomial
x2 + y2 is equivalent to 2(x2 + y2) and 5(x2 + y2) and so on - which is justified since all these
polynomials have the same 0s. Furthermore, since k[x1, x2] is a UFD, two polynomials are
equivalent is equivalent to this being satisfied.

The degree of a curve is the degree of any representative of the curve. A curve of degree
one is a line i.e ax + by + c = 0 or simply ax + by + c.

Definition 59. Components of an affine plane curve. If f =
∏

fei
i where fi are irreducible

factors of f, we say that fi are the components of f and ei is the multiplicity of the fi.
If ei = 1, fi is called a simple component. Otherwise, it is a multiple component.

If f is irreducible, then (f) is prime and so V(f) is irreducible variety in A2. We will often
write O(f) to mean O(V(f)). Similarly, write k(f) instead of
k(V(f)) and Op(f) instead of Op(V(f)).

Definition 60. Simple point, tangent line, non-singular curve. Let f be a curve and let
p = (a, b) ∈ f. The point p is called a simple point of f if either derivative d

dx f(p) ̸= 0 or
d

dy f(p) ̸= 0. In this case, the line d
dx f(p)(x – a) + d

dy f(p)(y – b) = 0 is called the tangent line to
f at p. A point that is not simple is called multiple (or singular). A curve with only simple
points is called a non-singular curve.

Definition 61. Multiplicity. Let f be any curve and p = (0, 0). Write f = fm + fm+1 + · · ·+ fn,
where fi is a form of degree i and fm ̸= 0. We define m to be the multiplicity of f at p = (0, 0)
and write m = mp(f).

Couple of immediate properties (for p = (0,0)):
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Lemma 77. Let p = (0, 0). Then,
(1) p ∈ f if and only if mp(f) > 0.
(2) p is a simple point on f if and only if mp(f) = 1 and in this case f1 is the tangent line to
f at p. If m = 2, p is called a double point. If m = 3, p is called a triple point and so on.

Proof: Suppose p = (0, 0) ∈ f. Then, if we write f = fm + fm+1 + ·+ fn and fm ̸= 0, then since f = 0
at p, each fi must disappear and so m > 0 (if m = 0, then fm(p) ̸= 0 since fm ̸= 0). Converse is
straightforward.

Given fm ∈ k[x, y] is a form, write fm =
∏

i gri
i where each gi is a distinct line. The lines gi

are called the tangent lines to f at p = (0, 0) and ri is called the multiplicity; gi is called
simple tangent line if ri = 1. If f has m distinct simple tangents at p, we say p is an
ordinary multiple point of f. An ordinary double point is called a node.

Let f =
∏

i fei
i be the factorization of f into irreducible components. Then, mp(f) =

∑
eimp(fi)

and if L is a tangent line to fi with multiplicity ri.

Proposition 78. A point p is a simple point of f if and only if p belongs to just one compo-
nent fi of f where fi is a simple component of f and p is a simple point of fi.

Define multiplicity at an arbitrary point:

Let P = (a, b) ̸= (0, 0). Let T be the translation that takes (0, 0) to P i.e T(x, y) = (x + a, y + b).
Then fT = f(x + a, y + b).

Definition 62. Multiplicity at any point p. We define mp(f) to be m(0,0)(f
T) i.e write fT =

gm + gm+1 + · · · where gi is a form and gm ̸= 0 and let m = mp(f).

Definition 63. Tangent Lines. If gm =
∏

i Lri
i where Li = αix + βiy, then the lines αi(x – a) +

βi(y – b) are defined to be the tangent lines to f at p and ri is the multiplicity of the tangent.

Therefore, p is a simple point on f if and only if mp(f) = 1.

Theorem 79. Let f be an irreducible plane curve and let p ∈ f. Then, p is a simple point of
f if and only if Op(f) = Op(V(f)) is a discrete valuation ring.

14.2 Intersection Number

Let f and g be plane curves with p ∈ A2. Our goal is to define what the intersection
number of f and g is at p, denoted by I(p, f ∩ g).
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Desired properties of intersection number:
We say that f and g intersect properly at p if f and g have no common component that
passes through p.
(1) I(p, f∩g) is a nonnegative integer for any f, g and p such that f and g intersect properly
at p. Also, I(p, f ∩ g) = ∞ if f and g do not intersect properly at p.
(2) I(p, f ∩ g) = 0 if and only if p ̸∈ f ∩ g. I(p, f ∩ g) depdends only on the components of f
and g that pass through p. I(p, f ∩ g) = 0 if f or g is a non-zero constant.
(3) If T is an affine change of coordinates on A2 and T(q) = p, then I(p, f∩ g) = I(q, fT ∩ gT).
(4) I(p, f ∩ g) = I(p, g ∩ f)

Two curves, f and g intersect transversally at p if p is a simple point on both f and on g
and if the tangent line to f at p is different from the tangent line of g at p.

So,

(5) I(p, f ∩ g) ≥ mp(f)mp(g), with equality occurring if and only if f and g have no tangent
lines in common at p.

(6) If f =
∏

fri
i and g =

∏
g

sj
j , then I(p, f ∩ g) =

∑
i,j risjI(p, fi ∩ gj).

(7) I(p, f ∩ g) = I(p, f ∩ (g + Af)) for any A ∈ k[x, y].

Theorem 80. There is a unique intersection number I(p, f ∩ g) defined for all plane curves
f, g and all points p ∈ A2 satisfying the properties (1) - (7). It is given by

I(p, f ∩ g) = dimk(Op(A2)/(f, g))
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15 Projective Space

15.1 Construction of Projective Space

Consider two curves: y2 = x2 + 1 and y2 = αx where α ∈ k. These two curves intersect at
two points when α ̸= ±1. When α = ±1, the curves do not intersect however the curve is
asymptotic to the line. Our goal is to enlarge the xy plane to allow such curves to intersect
at infinity.

Identify each (x, y) ∈ A2 with (x, y, 1) ∈ A3. Then, every point (x, y, 1) determines a line
that passes through itself and (0, 0, 0). Note that every line through the origin in A3 cor-
responds to exactly one such point, unless the line is on the plane z = 0. We say that the
lines through (0, 0, 0) in z = 0 plane correspond to points at infinity.

Definition 64. Projective n-space over k, Pn
k. This is defined to be the set of all lines

through (0, 0, · · · , 0) ∈ An+1
k . Any point (x) = (x1, ..., xn, xn+1) ̸= (0, · · · , 0) determines a

unique such line i.e {(λx1, · · · ,λxn) : λ ∈ k×}. Two such points are equivalent i.e determine
the same line if and only if there exists a non-zero λ ∈ k such that yi = λxi for i = 1, ..., n, n+
1. Therefore, Pn is the set of equivalence classes of points in An+1\{(0, · · · , 0)}. Elements
of Pn are called points. If p ∈ Pn is determined by some (x, · · · , xn+1) ∈ An+1, then we
say (x1, ..., xn+1) are homogenous coordinates for p. We write p = [x1 : · · · : xn+1] to
indicate that (x1, ..., xn+1) are homogenous coordinates for p ∈ Pn. While xi itself is not
well-defined (because of the equivalence), it is well-defined to say whether xi is 0 or not;
if xi ̸= 0, then

xj
xi

are well-defined

Definition 65. Ui. We let Ui = {[x1 : · · · : xn+1] ∈ Pn : xi ̸= 0}. Then, for any p ∈ Ui, p can
be uniquely written as p = [x1 : · · · : xi–1 : 1 : xi+1 : · · · : xn+1] which allows us to view Ui
as an affine n-space. Visualize Ui as taking a sphere and cutting the space perpendicular
to the i-th axis. The coordinates (x1, ..., xi–1.xi+1, ...., xn+1) are called the non-homogenous
coordinates for p with respect to Ui.

If we define φi : An → Ui by φi(a1, .., an) = [a1 : · · · : ai–1 : 1 : ai : · · · : an], then φi sets up a
one-to-one correspondence between points of An and the points of Ui. Note,

Pn = ∪n+1
i Ui

so Pn is covered by n + 1 sets each of which looks like affine n-space.

Definition 66. Hyperplane at infinity.

H∞ = Pn\Un+1 = {[x1 : · · · : xn+1] : xn+1 = 0}
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Given there is a natural correspondence between [x1 : · · · : xn : 0] and [x1 : · · · : xn], H∞
can be indentified with Pn–1 and so Pn = Un+1 ∪H∞

We will often use the following:

Pn = H∞ ∪ Un+1

Examples:
(1) P0

k is a pont.
(2) P1

k = {[x : 1] : x ∈ k} ∪ {[1 : 0]}. P1
k is the affine line plus one point at infinity. P1

k is the
projective line over k.
(3) P2

k = {[x : y : 1] : (x, y) ∈ A2} ∪ {[x : y : 0] : [x : y] ∈ P1}. Here H∞ is called the line at
infinity. P2

k is called the projective plane over k.
(4) Consider the line y = mx + b in A2. Identify A2 with U3 ⊂ P2, then the points on
the line correspond to the points y = mx + bz and z ̸= 0. The set {[x : y : z] ∈ P2 : y =
mx + bz} ∩ H∞ = {[1 : m : 0]} so all lines with the same slope, when extended in this way,
pass through the same point at infinity.
(5) Consider the curve y2 = x2 + 1. The corresponding set in P2 is given by the equation
y2 = x2 + z2 where z ̸= 0. Then, {[x : y : z] ∈ P2 : y2 = x2 + z2} intersects H∞ in the two
points [1 : 1 : 0] and [1 : –1 : 0]. These are the points where the lines y = x and y = –x
intersect the curve.

Lemma 81. Pn = Pn–1 ∪ An

Proof.

Pn = H∞ ∪ Un+1
= An ∪ Un+1

= An ∪ Pn–1

Proposition 82. Let L1 and L2 be two projective lines in P2. Then, L1 ∩ L2 ̸= ∅; they
intersect at a point if L1 ̸= L2 or L1 ∩L2 = L1 = L2. However, in A2, two lines may have no
intersection.

Proof. Let the 2 lines in A2 be ax + by + c = 0 and a′x + b′y + c′ = 0. Now, if these lines
are not parallel, they already intersect in A2. They would also intersect in P2 : replace x
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and y with x
z , y

z to write ax + by + cz = 0, a′x + b′y + c′z = 0, subtract the two equations to
get x = c–c′

a
b – a′

b′
z where the denominator is not 0 since the two lines were not parallel. Now,

suppose the two lines were parallel. Then, we can rewrite the lines in P2 as ax+ by+ cz = 0
and ax + by + c′z = 0 where c ̸= c′. Take z = 0 and we now get y = – a

bx. So the two lines
intersect [–b, a, 0]. Note that if c = c′, then the two lines are the same.

15.2 Projective Variety

Definition 67. Zero of a polynomial in Pn. A point p ∈ Pn is a zero of a polynomial f ∈
k[x1, ..., xn+1] if f(x1, ...., xn+1) = 0 for every choice of homogenous coordinates (x1, ..., xn+1)
for p. We say f(p) = 0. If f vanishes at one representative, then it vanishes at every
representative of p.

Proposition 83. (1) Any polynomial f ∈ k[x1, · · · , xn+1] may be written as f = f0 + · · · + fr
for r = deg(f) where fi is a homogenous polynomial of degree i.
(2) If f(p) = 0, then fi(p) = 0 for any set of homogenous coordinates for p.

Proof. (1) follows from just writing f as a sum of monomials of degree i. We prove (2) now:
given fi(p) is a homogenous polynomial, fi(tp) = tifi(p). Then, ψ(t) = f(tp) =

∑
i tifi(p).

Given f(tp) = 0 for all t ̸= 0 i.e infinitely many t, then ψ(t) ∈ k[t] has infinitely many 0s, so
ψ(t) is the zero polynomial i.e fi(p) = 0 for all i.

Definition 68. Projective varieties. For any set S of polynomials in k[x1, ..., xn+1], we let

V(S) = {p ∈ Pn : p is a zero of each f ∈ S}.

Vanishing ideal. If I is the ideal generated by S, then V(I) = V(S). If I = (f(1), · · · , f(r)) where
f(i) =

∑
j f(i)

j where f(i)
j is a form of degree j, then V(I) = V({f(i)

j }i,j) (see the first proposition
of this section) is the set of zeros of a finite number of forms. Such sets are called projective
varieties.

Definition 69. Vanishing ideal. Let X ⊂ Pn, we let

I(X) = {f ∈ k[x1, ..., xn+1] : f is zero on every p in X}.

An ideal I ∈ k[x1, .., xn+1] is homogenous if for every f =
∑m

i=0 fi ∈ I where fi is a form of
degree i, we also have fi ∈ I. For any X ⊂ Pn, I(X) is a homogenous ideal.

Proposition 84. An ideal I ⊂ k[x1, ..., xn+1] is homogenous if and only if it is generated by
a finite set of forms.
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Proof. Suppose I = (f(1), · · · , f(r)) is homogenous, then I is generated by {f(i)
j }i,j. Conversely,

suppose S = {f(α)} be a set of forms generating an ideal I with deg(f(α)) = dα and suppose
f = fm + · · ·+ fr ∈ I and deg(fi) = i. We need to show that fm ∈ I because then f – fm ∈ I and
then by induction each fi would be in I. Let f =

∑
α a(α)f(α) ∈ I. Comparing terms of the

same degree, we can see that fm =
∑

α a(α)
m–dα

f(α), so fm ∈ I.

One can easily prove the following:

Lemma 85. The sum, product, intersection and radical of homogenous ideals are all ho-
mogenous.

Similar to the affine case, V ⊂ Pn is irreducible if and only if I(V) is prime. Any algebraic
variety can be written uniquely as a union of projective varieties, its irreducible compo-
nents.

Notation: We use Vp, Ip for projective operations and Va, Ia for affine ones.

Definition 70. Cone over V. If V is an algebraic variety in Pn, we define

C(V) = {(x1, .., xn+1) ∈ An+1 : [x1 : · · · : xn+1] ∈ V or (x1, ..., xn+1) = (0, · · · , 0)}.

If V = ∅, then Ia(C(V)) = Ip(V),. If I is a homogenous ideal in k[x1, ..., xn+1] s.t Vp(I) ̸= ∅,
then C(Vp(I)) = Va(I)

15.3 Graded ring and importance of forms+homogenous ideals

Most of this is from Hartshorne. We introduce the algebraic constructions on which the
previous subsection was built.

Definition 71. Graded ring. A graded ring S is a ring with a decomposition S = ⊕d≥0Sd
of S into a direct sum of abelian groups Sd such that for any d, e ≥ 0, Sd · Se ⊆ Sd+e. An
element of Sd is called a homogenous element of degree d. Therefore, any element of S
can be written uniquely as a finite sum of homogenous elements.

Therefore, S := k[x0..., xn] is a graded ring. We let Sd be the set of all forms of degree d.

Definition 72. Homogenous ideal. S is a graded ring. An ideal I ⊆ S is a homogenous
ideal if I = ⊕d≥0(I ∩ Sd). Alternatively: if I is a homogenous ideal, then for any a ∈ I s.t
a =

∑
d ad where ad ∈ Sd, we have that ad ∈ I as well.
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Importance of forms and homogenous ideals: if f ∈ S = k[x0, ..., xn] is a polynomial, it
does not define a function on Pn because of the non-uniqueness of the homogenous coor-
dinates. However, if f is a form/homogenous polynomial of degree d, then, f(λa0, ...,λan) =
λdf(a0, ..., an). This means the property of f being 0 or not only depends on the equivalence
class of (a0, ..., an). This allows us to write f as a function from Pn to {0, 1} by letting f(p) = 0
if f(a0, ...., an) = 0 and f(p) = 1 if f(a0, ..., an) ̸= 0.

This, in turn, allows us to define V(f) = {p ∈ Pn : f(p) = 0}.

Now, we can define the Zariski topology on Pn since we have a notion of what a projective
variety is.

Open cover of projective spaces: Let f ∈ S := k[x0, ..., xn] be a linear homogenous polyno-
mial. Then, the zero set of f is called a hyperplane. We define

Hi := {(x0, ..., xn) ∈ Pn : xi = 0}

and
Ui := Pn – Hi.

Then, Pn is covered by the open sets Ui - this is because if P = (a0, ..., an) ∈ Pn is a point,
then at least one ai is not 0 and so the point is in Ui.

15.4 Projective Nullstellensatz

Theorem 86. Projective Nullstellensatz. Let I be a homogenous ideal in k[x1, · · · , xn+1].
Then,
(1) Vp(I) = ∅ if and only if there exists an integer N such that I contains all forms of degree
≥ N.
(2) If Vp(I) ̸= ∅, then Ip(Vp(I)) =

√
(I).

Proof. For the first part: The following conditions are equivalent: (1) Vp(I) = ∅, (2) Va(I) ⊂
{(0, · · · , 0)}, (3)

√
(I) = Ia(Va(I)) ⊃ (x1, ..., xn+1) (by taking I(–) of both sides in (2)) and (4)

(x1, ..., xn+1)N ⊂ I.

For the second part: Ip(Vp(I)) = Ia(C(Vp(I))) = Ia(Va(I)) =
√

I.
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15.5 Homogenous coordinate ring

Definition 73. Coordinate ring. Let I(V) be a homogenous, prime ideal and we call the
residue ring Oh(V) := k[x1, · · · , xn+1]/I(V), which is an integral domain, is called the ho-
mogenous coordinate ring.

More generally, let I be any homogenous ideal in k[x1, · · · , xn+1] and let k[x1, ..., xn+1]/I
be a coordinate ring.

Proposition 87. Every element f ∈ k[x1, ..., xn+1]/I (where I is homogenous) may be uniquely
written as f = f0 + · · · + fr where fi is a form of degree i.

Proof. We already saw how to find one such decomposition. Suppose f ∈ Oh(V) with f =∑
i fi. Suppose, we have another decomposition f =

∑
i gi. Then, f –

∑
i gi =

∑
i(fi – gi) ∈ I

and given I is homogenous, each fi – gi ∈ I

Definition 74. Homogenous function field. Let kh(V) be the quotient field of Oh(V). This
is called the homogenous function field of V. No elements of Oh(V) except the constants
determine functions on V (since we are in the projective space so tx = x ∈ Pn for nonzero
t). However, if f, g ∈ Oh(V) are both forms of the same degree d, then f

g does define a

function where g is not zero because then f(λs)
g(λs) = λdf(x)

λdg(x)
= f(x)

g(x) so f
g is independent of our

choice of homogenous coordinates in Pn.

Definition 75. Function field. The function field of V, written k(V), is defined to be

{z ∈ kh(V) : for some forms of same degree f, g ∈ Oh(V), z =
f
g

}.

It is not difficult to verify that k(V) is a subfield of kh(V). So, k ⊂ k(V) ⊂ kh(V) but
Oh(V) ⊊ k(V) and elements of k(V) are called rational functions on V.

Similarly, we can also define local rings and so on.

Let p ∈ V and z ∈ k(V). Then, z is defined at p if z can be written as z = f
g where f, g are

forms of the same degree and g(p) ̸= 0. Then,

Op(V) = {z ∈ k(V) : z is defined at p.

We see that Op(V) is a subring of k(V). It is a local ring, called the local ring of V at p, with
the unique maximal ideal

mp(V) = {z ∈ k(V) : z =
f
g

, g(p) ̸= 0, f(p) = 0}
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and the value z(p) of a function z ∈ Op(V) is well-defined.

Definition 76. Homogenization. Given a polynomial f(x1, ..., xn) of degree d, the homog-
enization with respect to xi is the polynomial f(x1/xi, ...., xn/xi)xd

i . The dehomogenization
of a polynomial g(x1, ..., xn, z) is g(x1, ..., xn, 1).

Definition 77. We define the following map φi : Ui → An as follows: if p = (a0, ...., an) ∈
Ui, then

φi(p) =
(

a0
ai

, ...,
ai–1
ai

, 1,
ai+1
ai

, · · · ,
an
ai

)
Proposition 88. The map φi as defined above is a homeomorphism of Ui with its induced
topology to An with its Zariski topology.

Proof. We know φi is bijective. We now show that the closed subsets are sent to closed
subsets by the function. Without loss of generality, suppose i = 0. We simply write U :=
U0, φ := φi.

Suppose A = k[y1, ..., yn]. First define α : Sh → A where Sh is the set of homogenous
elements of S. Also define β : A → Sh. Given f ∈ Sh, we set α(f) = f(1, y1, ..., yn) and given
g ∈ A of degree r, then β(g) = xe

0g(x1/x0, ..., xn/x0) is a homogenous polynomial of degree
e in the xi.

Let Y ⊆ U be a closed subset. Let Ȳ be its closure in Pn. This is an algebraic set so Ȳ = V(T)
for some subset T ⊆ Sh. Let T′ = α(T). Then, one can check that φ(Y) = V(T′). Conversely,
let W be a closed subset of Yn. Then, W = V(T′) for some subset T′ of A. One can check
that φ–1(W) = V(β(T′)) ∩ U. Therefore, φ and φ–1 preserve closed sets.

Corollary 89. If Y is a projective (respectively, quasi-projective) variety, then Y is covered
by the open sets Y ∩ Ui for i = 0, ..., n which are homeomorphic to affine (respectivey,
quasi-affine) varieties through the map φi defined above.

Example: x2 + y2 + 1 can be homogenized to get z2(x2/x2 + y2/x2 + 1) = x2 + y2 + z2. On the
other hand, the dehomogenizatino of x2 + y2 + z2 is x2 + y2 + 1.

Definition 78. Rational map between projective varieties. Let X ⊆ Pn and let Y ⊆ Pm be
projective varieties. A rational map f : X → Y is a collection of homogenous polynomials
of same degree :

[x0, x1, ..., xn] → [f0(x), f1(x), ..., fm(x)],

such that f(U) ⊆ V where U is an open subset of X where fi has no common zeros. We say
two tuples [fi] and [f′i] are equal if they agree on an open, dense subset of X. We say f is
regular at p ∈ X (or defined at p ∈ X) if we can find such fi with no common zero at p, so
f(p) ∈ Y is well-defined. A regular map f : X → Y is a rational map that is regular at every
point of X.
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16 Intersection Number in Projective Spaces, Bezout’s The-
orem

Most (if not all) of this is from Hartshorne’s.

16.1 Affine and Projective Dimension Theorems

In linear algebra, we have seen the following : given U, V ⊆ W s.t dim(U) = r, dim(V) = s,
dim(W) = n, we know dim(U ∩ V) ≥ r + s – n. We will try to prove something similar for
U, V irreducible algebraic sets.

Proposition 90. Affine Dimension Theorem. Let Y and Z be irreducible varieties of di-
mensions r, s in An. Then, every irreducible component W of Y∩Z has dimension ≥ r+s–n.

Proof. Suppose Z is a hypersurface defined by f = 0. Now, if Y ⊆ Z then we are done :
Y ⊆ Z implies Y = Z and there there is no irreducible component other than Z itself. Now
suppose Y ̸⊂ Z. We prove that each irreducible component W ⊂ Y ∩ Z has dimension
r – 1 (because dim(Z) = n - 1). Let O(Y) be the coordinate ring of Y. Then, the irreducible
components of Y ∩ Z directly correspond to minimal prime ideals p of the principal ideal
(f) ⊂ O(Y). From Krull dimension, each such p has height one and so O(Y)/p has dimen-
sion r – 1. Using the fact that dim(V) = dim(O(V)), we conclude.

Now, for the general case: consider the product Y×Z ⊆ A2n - this is an irreducible variety
of dimension r + s. Let ∆ be the diagonal {p × p : p ∈ A2n} ⊆ A2n. Then, An ∼= ∆ are
isomorphic (use the map p → p×p). Then, Y∩Z corresponds to (Y×Z)∩∆. Given ∆ has
dimension n (since An has dimension n) and since r+s–n = (r+s)+n–2n, then our problem
can be rephased into proving the result for the two varieties Y×Z and ∆ in A2n. We know
∆ is the intersection of exactly n hypersurfaces namely x1–y1 = 0, x2–y2 = 0, · · · , xn–yn = 0
where (x1, ..., xn, y1, ..., yn) are the coordinates of A2n. Apply the special case above here to
conclude.

Theorem 91. Projective Dimension Theorem. Let Y and Z be two irreducible varieties
of dimension r and s in Pn. Then, every irreducible component of Y ∩ Z has dimension
≥ r + s – n. Furthermore, if r + s – n ≥ 0, then Y ∩ Z is nonempty.

Proof. First part follows from the affine dimension theorem since Pn is covered by affine
n-spaces.
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16.2 Numerical Polynomials, Hilbert Polynomials

Definition 79. Numerical polynomial. A numerical polynomial is a polynomial p(z) ∈
Q[z] s.t p(n) ∈ Z for all n ≥ 0, n ∈ Z.

For an easy example, we have f ∈ Z[x]. But to get a more general understanding of these
polynomials, we have the following:

Proposition 92. (a) If p ∈ Q[z] is a numerical polynomial, then there are integers c0, c1, · · · , cr
s.t p(z) = c0

(z
r
)

+c1
( z

r–1
)

+ · · ·+cr where
(z

r
)

= 1
r! (z)(z–1) · · · (z–r+1) is the familiar binomial

coefficient. With this, p(n) ∈ Z for all n ∈ Z.
(b) If f : Z → Z is any function and if there exists a numerical polynomial Q(z) s.t the
difference function ∆(f) = f(n + 1) – f(n) is equal to Q(n) for all n >> 0, then there exists a
numerical polynomial p(z) s.t f(n) = p(n) for all n >> 0.

Proof. (a) Prove by induction. When deg(p) = 0, the statement is already proven. Now,(z
r
)

= zr

r! + · · · , we can express p ∈ Q[z] f degree r in the form above given c0, · · · , cr ∈ Q
(we still need to show that they are integers). Now, for any polynomial p, we define the
difference polynomial ∆p by ∆p(z) = p(z + 1) – p(z). Since ∆

(z
r
)

=
( z

r–1
)

(i.e
(z+1

r
)

–
(z

r
)

=( z
r–1
)
), we have that ∆p = c0

( z
r–1
)

+ c1
( z

r–2
)

+ · · · + cr–1. However, this is the expression
of our numerical polynomial of degree r - 1. By induction c0, · · · , cr–1 ∈ Z - which then
implies cr ∈ Z since p(n) ∈ Z for n >> 0.
(b) Let q = c0

(z
r
)

+ · · · + cr where c0, ..., cr ∈ Z. Now, let p = c0
( z

r+1
)

+ · · · + cr
(z

1
)
. Then,

∆p = q. So, ∆(f – p)(n) = 0 for all n >> 0. So, (f – p)(n) = cr+1 a constant for all n >> 0. So,
f(n) = p(n) + cr+1 for all n >> 0.

16.3 Graded Modules

Definition 80. Graded S-module. A graded S-module is an S-module M (where S is a
graded ring) with the decomposition M = ⊕d∈ZMd s.t Sd · Me ⊆ Md+e.

Definition 81. Twisted Module. Let M be a graded S-module. Let l ∈ Z. Then, M(l) is the
twisted module defined M(l)d = Md+l i.e shifting M to the right by l places.

Definition 82. Annihilator of a graded module. Let M be a graded S-module. Define

Ann M := {s ∈ S : s · M = 0}

which is a homogenous ideal in S.

64



Recall: For a graded ring S with decomposition S = ⊕d≥0Sd, an ideal I is called homogenous if
I = ⊕d≥0(I ∩ Sd). I find the alternative phrasing more easy to remember: if I is a homogenous
ideal, then for any a ∈ I s.t a =

∑
d ad where ad ∈ Sd, we have that ad ∈ I as well.

Definition 83. Minimal primes of M. Let M be a graded S-module. Then, the minimal
primes of M are the minimal prime ideals containing Ann M.

Proposition 93. Let M be a finitely generated graded module over a Noetherian graded
ring S. Then, there exists a filtration 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mr = M by graded
submodules s.t for each i we have

Mi/Mi–1 ∼= (S/pi)(li)

where pi is a homogenous prime ideal of S and li ∈ Z. This filtration need not be unique
but we have the following two properties:
(a) if p is a homogenous prime ideal of S, then p ⊇ Ann M ↔ p ⊇ pi for some i. In partic-
ular, the minimal elements of the set {p1, · · · , pr} are just the minimal primes of M i.e the
primes which are minimal containing Ann M;
(b) for each minimal prime of M, the number of times which p occurs in the set {p1, · · · , pr}
is equal to the length of Mp over the local ring Sp (and hence is independent of the filtra-
tion).

The proof can be found in Hartshorne’s; I am writing out the part that I found non-obvious
for reference.

Proof. Prove existence first. Consider first the set of graded submodules of M which ad-
mits such a filtration. The zero module does so the set is non-empty. Now, M is a Noethe-
rian module so there is a maximal such submodule M′ ⊆ M. Now, consider M′′ := M/M′

- we want to show this is isomorphic to some (S/pi)(li).
If M′′ = 0, we are done. If not, we consider the set of ideals A = {Im = Ann(m) : m ∈
M′′ is a homogenous element, m ̸= 0}. Then, each Im is a homogenous ideal and Im ̸= S.
Given S is a Noetherian ring, we can find an element m ∈ M′′, m ̸= 0 s.t Im is a maximal
element of the set A. Furthermore, Im is a prime ideal. Let a, b ∈ S. Suppose ab ∈ Im but
b ̸∈ Im. We can split a, b into homogenous components so we can assume that a and b
are homogenous elements. Consider bm ∈ M′′. Since b ̸∈ Im, we know bm ̸= 0. Further-
more, Im ⊆ Ibm, so by maximality of Im, we know Im = Ibm. But ab ∈ Im so abm = 0, so
a ∈ Ibm = Im. Therefore, Im is a homogenous prime ideal of S.

Let p := Im := Ann(m) and let m ∈ M′′ := M/M′ be of degree l. Then, the module N ⊆ M′′

generated by m is isomorphic to (S/p)(–l). Let N′ ⊆ M be the inverse image of N in
M. Then, M′ ⊆ N′ and N′/M′ ∼ (S/p) ∼= (S/p)(–l). This suggests that N′ also has the
filtration of the type required. This contradicts the maximality of M′. We conclude that
M′ was equal to M.
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Before we proceed, we generalize the concept of localization to modules as well.

Definition 84. Localization of a module. Let A be a ring with S a multiplicative subset
i.e 1 ∈ S and S is closed under multiplication. Let M be an A-module. Then, define an
equivalence relation on M × S by saying (m, s) ∼ (n, t) iff (mt – ns)u = 0 for some u ∈ S.
Let S–1M be the set of all such equivalence classes and the equivalence class of (m, s) is
denoted by m/s. This makes S–1M an S–1A-module.

Definition 85. If p is a minimal prime of a graded S-module M, we define the multiplicity
of M at p, denoted by µp(M), to be the length of Mp over Sp.

Recall: Here, Mp = (S – p)–1M where p is a prime ideal of S and this becomes a Sp-module.

Definition 86. Hilbert function of M. Let M be a graded module over the polynomial ring
S = k[x0, · · · , xn]. Then, the Hilbert function is

φM(l) = dimkMl

for each l ∈ Z.
(recall the RHS is the largest length of strictly containing submodules of Ml)

Theorem 94. (Hilbert-Serre) Let M be a finitely generated graded S = k[x0, ..., xn]-module.
Then, there exists a unique polynomial pm(z) ∈ Q[z] s.t φM(l) = pM(l) for all l >> 0. Fur-
thermore, degpM(Z) = dimV(AnnM) where V is the variety/zero set in Pn of a homoge-
nous ideal.

Definition 87. The polynomial pM of the theorem is called the Hilbert polynomial of M.

Notation: Write S(Y) (instead of O(Y)) to make it clear that we are considering the ho-
mogenous coordinate ring of Y.

Definition 88. If Y ⊆ Pn is an algebraic set of dimension r, we define the Hilbert polyno-
mial of Y to be the Hilbert polynomial PY of its homogenous coordinate ring S(Y), which
is a polynomial of degree r. We define the degree of Y to be r! times the leading coefficient
of PY.

Proposition 95. (a) If Y ⊆ Pn and Y ̸= ∅, then the degree of Y is a positive integer. (b) Let
Y = Y1 ∪ Y2 where Y1 and Y2 have the same dimension r and where dim(Y1 ∩ Y2) < r.
Then, deg Y = deg Y1 + deg Y)2. (c) degPn = 1. (d) If H ⊆ Pn is a hypersurface whose
ideal is generated by a homogenous polynomial of degree d, then deg H = d.

Now, we finally come back to intersection.
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Let Y ⊆ Pn be a projective variety of dimension r. Let H be a hypersurface not containing
Y. Then, Y ∩ H = Z1 ∪ · · · ∪ Zs where Zj are the irreducible varieties of dimension r – 1.
Let pj be the homogenous prime ideal of Zj. Then, we define the intersection multiplicity
of Y and H. Define the intersection multiplicity of Y and H along Zj to be i(Zj, Y ∩ H) =
µpj

(S/(IY + IH)). Here IY and IH are the homogenous ideals of Y and H. The module
M = S/(IY + IH) has the annihilator IY + IH and V(IY + IH) = Y∩H, so pj is a minimal prime
of M and µ is the multiplicity defined above.

Theorem 96. Let Y be an irreducible variety of dimension ≥ 1 in Pn and let H be a hyper-
surface not containing Y. Let Z1, · · · , Zs be the irreducible components of Y ∩ H. Then,

s∑
j=1

i(Zj, Y ∩ H) · deg(Zj) = deg(Y)deg(H)

Theorem 97. Bezout’s Theorem. Let Y and Z be distinct curves in P2 with degrees d and
e respectively. let Y ∩ Z = {p1, · · · , ps}. Then,∑

j

i(pj, Y ∩ Z) = de
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17 Projective Plane Curves

Definition 89. Projective Plane Curve. A projective plane curve is a hypersurface in P2

but we allow multiple components: two non-constant forms f, g ∈ k[x, y, z] are equivalent
if there exists a nonzero λ ∈ k such that f = λg. This makes sense because if f is a form of
degree d, then f(tx) = tdf(x) and in projective space tx ≡ x so tdf(x) ≡ f(x).

So, a projective plane curve is an equivalence class of forms. This also makes sense. Sup-
pose f ∈ k[x0, ..., xn] is a projective plane curve. Then, f(x) = 0 =⇒ f(tx) = 0. But
f(tx) =

∑d
i=1 tifi(x) ≡ f(x) forcing us to write the equivalence tif(x) ≡ f(x).

The degree of a curve is the degree of a defining form. Curves of degree 1, 2, 3 and 4 are
called lines, conics, cubics and quartics, respectively.

Notation: Once again, we will write Op(f) to mean Op(V(f)) for an irreducible f.

When p = [x : y : 1], then Op(f) is canonically isomorphic to O(x,y)(f∗)

Multiplicity of projective curve - if f is a projective plane curve and p ∈ Ui where i = 1, 2
or 3, then, we can dehomogenize f with respect to xi and define the multiplicity of f at
p, mp(f), to be mp(f∗). The multiplicitiy is independent of the choice of Ui and invariant
under projective change of coordinates.

We will require the following:

Proposition 98. Let P = [x : y : z] ∈ P2. Then, {(a, b, c) ∈ A3 : ax + by + cz = 0} is a
hyperplane in A3. Furthermore, for any finite set of points, p1, ..., pn, in P2, there is a line
not passing through any of them.

Proof. The first part is straightforward. Write the set as V(T1x + T2y + T3z) which makes
this a hyperplane. Now we prove the second part. Then, the proposition is saying, there
exists a, b, c ∈ k such that pi · (a, b, c) ̸= 0 (these a, b and c determine the direction vector
of the line). Let pi = (xi, yi, zi). Suppose for contradiction this is false. Then, p(x, y, z) =∏n

i (T1xi + T2yi + T3zi) vanishes at every point. Since k is infinite, this means p(x, y, z) = 0
so (T1xi +T2yi +T3zi) is 0 for some i which means pi = 0 which cannot be the case in P2.

Using this proposition, we know that if p1, ..., pn ∈ P2 are a finite set of points. Then, we
can always find a line L that does not pass through any of the points. If f is a curve of
degree d, then define

f∗ :=
f

Ld ∈ k(P2).
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If instead of L, we chose the line L′, then f/L′d = (L/L′)df∗ and L/L′ is a unit in each
Opi

(P2).

If p is a simple point on f i.e mp(f) = 1 and f is irreducible, then Op(f) is a discrete valuation
ring (DVR). We let ordf

p be the corresponding order function on k(f). If g is a form in
k[x, y, z] and g∗ ∈ Op(P2) is as defined above and ḡ∗ is the residue of g∗ in Op(f), we
define ordf

p(g) = ordf
p(ḡ∗). Equivalently, ordf

p(g) is the order of p at g/h where h is any
form of degree = deg(g) such that h(p) ̸= 0.

Definition 90. Intersection number of projective plane curves. Let f and g be projective
plane curves and let p ∈ P2. Then,

I(p, f ∩ g) := dimk(Op(P2)/(f∗, g∗)).

This is independent of the way f∗, g∗ are formed. This definition satisfies all of the de-
sired properties of intersection number except for (3), we have T a projective change of
coordinates and for (7), A is a form with deg(A) = deg(g) - deg(f).

Definition 91. Tangent to a curve. Define a line L to be a tangent to a curve f at p if
I(p, f ∩ L) > mp(f)

17.1 Linear System of Curves

Let’s work in projective space. Let M1, ..., MN be a fixed ordering of a set of monomials
in x, y, z of degree d where N = 1

2 (d + 1)(d + 2). Given a curve f of degree d is the same
thing as choosing a1, ..., aN ∈ k, not all zero, and letting f =

∑
i aiMi except that (a1, ..., aN)

and (λa1, ...,λaN) determine the same curve. So, each curve f of degree d corresponds to
a unique point in PN–1 = Pd(d+3)/2 and, conversely, each point in Pd(d+3)/2 represents a
unique curve.

Therefore, we often identify the curve f of degree d with a point of Pd(d+3)/2. This is why
we often say

Example: (1) For d = 1, each line ax + by + cz corresponds to the points [a : b : c] ∈ P2.
(2) For d = 2, the conic ax2 + bxy + cxy + dy2 + eyz + fz2 corresponds to the points [a : b : c :
d : e : f] ∈ P5. The conics form a P5. Similarly, the cubics form a P9 and the quartics form
P14

Lemma 99. (1) Let p ∈ P2 be a fixed point. The set of curves of degree d that contain p
forms a hyperplane in Pd(d+3)/2.
(2) If T : P2 → P2 is a projective change of coordinates, then the map f → fT from
{curves of degree d} to {curves of degree d} is a projective change of coordinates on Pd(d+3)/2.
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Proof. (1) If p = [x : y : z], then the curve corresponding to (a1, ..., aN) ∈ Pd(d+3)/2 passes
through p if and only if

∑
aiMi(x, y, z) = 0. Since not all Mi are 0, the [a1 : · · · : aN]

satisfying this equation form a hyerplane.

17.2 Bezout’s Theorem

Theorem 100. Let f and g be projective plane curves of degree m and n respectively. As-
sume f and g have no common component. Then,

∑
p I(p, f∩ g) = mn. In other words, the

two curves intersect in mn points, counting multiplicity.

Corollary 101. If f and g have no common component, then
∑

p mp(f)mp(g) ≤ deg(f)deg(g)

Corollary 102. If f and g meet in mn distinct points, m = deg(f), n = deg(g), then these
points are all simple points on f and g.

Corollary 103. If two curves of degree m and n have more than mn points in common,
then they have a common component.

Theorem 104. If f is an irreducible curve of degree n, then
∑ mp(mp–1)

2 ≤ (n–1)(n–2)
2 .

17.3 Max Noether’s Fundamental Theorem

Definition 92. Zero cycle. A zero cycle on P2 is a formal sum∑
p∈P2

npp

where np ∈ Z and all but finitely many np’s are zero. The set of all zero-cycles on P2 forms
an abelian group. The degree of a zero cycle

∑
npp is defined to be∑

np.

The zero cycle is positive if each np ≥ 0.
We can also order zero cycles in some sense. We say

∑
p npp ≥

∑
p mpp i.e

∑
n npp ≥∑

p mpp if each np ≥ mp.

Definition 93. Intersection cycle. Let f and g be projective plane curves of degree m, n
such that they have no common components. The intersection cycle f · g is defined by

f · g =
∑

p∈P2

I(p, f ∩ g)p.

By Bezout’s theorem, f · g is a positive zero-cycle of degree mn.

70



Lemma 105. (1) f · g = g · f,
(2) f · gh = f · g + f · h
(3) f · (g + af) = f · g given a is a form and deg(a) = deg(g) – deg(f).

Motivating the theorem: Suppose f, g and h are curves and h · f ≥ g · g i.e h intersect f in
a bigger cycle than g does. We want to find conditions s.t there exists a curve b so that
b · f = h · f – g · f.

To find such a b, we can find form a, b st h = af+bg. Then, h·f = (af+bg)·f = bg·f = b·f+g·f.

Definition 94. Noether’s conditions. Let p ∈ P2. Let f and g be curves with no component
through p. Let h be another curve. We say that Noether’s conditions are satisfied at p with
respect to f, g and h if H∗ ∈ (f∗, g∗) ⊂ Op(P2) i.e if there are a, b ∈ Op(P2) s.t h∗ = af∗ + bg∗.

Theorem 106. Max Noether’s Fundamental Theorem. Let f, g and h be projective plane
curves. Assume f and g have no common components. Then, there exists an equation
h = af + bg (with a, g forms of degree deg(h) - deg(f), deg(h) - deg(g) respectively) if and
only if Noether’s conditions are satisfied at every p ∈ f ∩ g.

Proof is in Fulton’s text.

Corollary 107. Let f,g and h be plane curves and p ∈ f∩g. Then, Noether’s conditions are
satisfied at p if any of the following are true:
(1) f and g meet transversally at p and p ∈ H.
(2) p is a simple point on f and i(p, h ∩ g) ≥ i(p, g ∩ f)
(3) f and g have distinct tangents at p and mp(h) ≥ mp(f) + mp(g) – 1.
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A Category Theory

These introductory category theory notes are all taken, almost verbatim, from Ravi Vakil’s
textbook [5] - which I find to be arguably one of the best texts in any field of mathematics
today.

A.1 Basic terminology

These notes are directly taken from (5).

Definition: Category. A category consists of a collection of objects and for each pair of
objects, a set of morphisms or arrows between them (which are often called maps). The
collection of objects of a category, C , is denoted as obj(C ) but we will often denote this
also by C . If A, B ∈ C , the set of morphisms from A to B are denoted by Mor(A, B) where
a morphism is often written as f : A → B. A is the source of f whereas B is the target of f.

Morphisms compose as expected; Mor(B, C) × Mor(A, B) → Mor(A, C). Composition is
associative, i.e (f ◦ g) ◦ h = f ◦ (g ◦ h).

For each object A ∈ C , there exists an identity morphism idA : A → A such that f◦ idA = f
and idA ◦ f = f. Identity morphism is unique.
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Definition: Isomorphism. An isomorphism between two objects is a morphism f : A → B
such that there exists a unique morphism g : B → A such that f ◦ g = idB and g ◦ f = idA

Definition: Automorphism. The set of invertible elements of Mor(A, A) forms a group
called the automorphism group of A.

Examples:
(1) Category of sets. The objects are sets and the morphisms are maps of sets.

(2) Another good example is the category Veck of vector spaces over a given field k. The
objects are k-vector spaces, and the morphisms are linear transformations.

(3) Category of Abelian groups. The objects are Abelian groups and the morphisms are
the group homomorphisms. This category is denoted as Ab.

(4) Category of modules over a ring. If A is a ring, then the A-modules form a category
Mod(A)

(5) Category of rings. Objects are rings and morphisms are ring homomorphisms.

Defintion: Subcategory. A subcategory A of a category C includes some of the objects
and morphisms of C such that the objects of A include the sources and targets of mor-
phisms of A and the morphisms of A include the identity morphisms of the objects in A
and are preserved by composition.

Now, we define functors.

Definition: Covariant functor from category A to category B , denoted by F : A → B.
This is a map of objects F : obj(A ) → obj(B) and for each A1, A2 ∈ A and morphism m :
A1 → A2, a morphism F(m) : F(A1) → F(A2). We require F preserves identity morphisms
i.e F(id)A = idF(A),∀A ∈ A . F must also preserve composition i.e F(m1 ◦ m2) = F(m1) ◦
F(m2).

To emphasize, a covariant functor has two "functions". One is mapping objects in one cat-
egory to objects in another one i.e F : obj(A ) → obj(B). The other is mapping morphisms
in one category to morphisms in another one by taking the "shadow" of the morphism
i.e F(·) : Mor(obj(A ), obj(A )) → Mor(obj(B), obj(B))

Example of covariant functor: Trivial example is the identity cofunctor id : A → B

Forgetful Functor: Consider the functor from the category of vectors space over k i.e Veck
to the category of sets by sending each vector space to its underlying set. Furthermore, F
sends each morphism m in Veck to the underlying map of sets. This is a forgetful functor
because it forgets additional structure.
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Definition: Faithfull and full covariant functors. A covariant functor F from category
A to B is faithful if for any A, A′ ∈ A , the map MorA (A, A′) → MorB(F(A), F(A′)) is
injective. It is full if it is surjective. A functor that is both full and faithful is called fully
faithful.

Defintion: Contravariant functor from category A to category B , denoted by F : A →
B. This is a map of objects F : obj(A ) → obj(B) and for each A1, A2 ∈ A and mor-
phism m : A1 → A2, a morphism F(m) : F(A2) → F(A1). We require F preserves identity
morphisms i.e F(id)A = idF(A),∀A ∈ A . Therefore, F(m1 ◦ m2) = F(m2) ◦ F(m1).

Example: Consider the category Veck of vector spaces over field k. Then, we can take the
duals to define a contravariant functor. Let f : V → W be a linear transformation. Then,
the dual transformation is f∗ : W∗ → V∗.

Example: Here is a pretty straightforward example of covariant and contravariant func-
tors. Consider a category C and the category of morphisms between sets S (note that
in this category, each object is a morphism and we have morphisms between morphisms.
Then, let A ∈ obj(C ). We first define a covariant functor :
hA : objC → (some morphism between sets in S) and in particular hA(B ∈ obj(C ) ∈
Mor(A, B). Furthermore, given f ∈ Mor(B1, B2) in category C , hA will send f to a mor-
phism from Mor(A, B1) to Mor(A, B2) and in particular hA(f ∈ Mor(B1, B2)(g ∈ Mor(A, B1)) =
(f ◦ g) ∈ Mor(A, B2).

Now, we define a contravariant functor. With the same set up i.e A ∈ obj((C)). Let B ∈
obj(C ), we have hA(B) ∈ Mor(B, A) (note that the direction has been reversed). Then,
hA : Mor(B1, B2) → (Mor(B2, A) → Mor(B1, A)) by the following: hA(f ∈ Mor(B1, B2))(g ∈
Mor(B2, A)) = g ◦ f ∈ Mor(B1, A)

Now, we introduce the concept of a natural transformation of covariant functors. Let F
be a covariant functor. Then, we consider the transformation F → G as follows: consider
the morphism mA : F(A) → G(A) for each A ∈ A such that f : A → A′ in A . This has the
following diagram:

F(A) F(A′)

G(A′)G(A)

mA mA′

F(f)

G(f)

A natural isomorphism of functors is a natural transformation such that each mA is an
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isomorphism. One can analogously define natural transformation of contravariant func-
tors.

Next, we introduce the notion of equivalnce of functors. The data of functors F : A → B
and F’ : B → A such that F ◦ F’ is naturally isomorphic to idB and F’ ◦ F is naturally
isomorphic to idA is the equivalence of categories. Two categories are "essentially the
same" when there is an equivalence of categories between them.

A.2 Universal properties

Definition: Initial, final and zero objects. An object of a category C is initial if it has only
one map to every object. An object is final if has only one map from every object. An
object iz zero if it is both initial and final.

Lemma 108. Any two initial objects are uniquely isomorphic. Any two final objects are
uniquely isomorphic.

The proof follows from the definition. This also shows that initial and final objects are
unique up to isomorphism. The fact an object is an initial or final or zero object is a
universal property.

Here are some more examples:

Localization of rings and modules. First, recall: a multiplicative subset S of a ring A
is a subse that is closed under multiplication and contains 1. Then, define the ring S–1A
whose elements are of the form a/s such that a ∈ A, s ∈ S, s ̸= 0 and a1/s1 = a2/s2 if
and only if ∃s ∈ S, s(s2a1 – s1a2) = 0. Lastly, a1/s1 + a2/s2 := (s2a1 + s1a2)/(s1s2) and
a1/s1 × a2/s2 = (a1a2)/(s1s2). Note, if 0 ∈ S, then S–1A is the 0-ring. Also, we have the
map A → S–1A by sending each a → a/1.

Now, we look at a few important multiplicative subsets.

The first is S = {1, f, f2, · · · } where f ∈ A. This is denoted by Af := S–1A. One can prove
that this is isomorphic to Af

∼= A[t]/(tf – 1). To prove this, we showed in the section
on coordinate rings that all elements in A[t]/(tf – 1) are of the form af–i for some a ∈
A, i ≥ 0. On the other hand, all elements in Af can be trivially sent to the same element in
A[t]/(tf – 1).

The second important multiplicative subset is S = A\p where p is a prime ideal. We
denote this by Ap := S–1A i.e we divide by elements that are not in p.
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The third is constructed as follows: given A is an integral domain, S := A\{0}. Then,
k(A) := S–1A is called the fractional field of A.

B Ring Theory Revision

All the material here is from Dummit and Foote’s "Abstract Algebra". Detailed proofs of
the theorems can be found in the text.

B.1 Rings, Ideals and Domains

Definition: Rings. A ring R is a set with binary operations × and + such that
(1) (R, +) is an abelian group (i.e has identity, inverses and associativity).
(2) × is associatve i.e (a × b) × c = a × (b × c)
(3) distributive laws hold in R i.e ∀a, b, c ∈ R, we have (a + b) · c = a · c + b · c and
a · (b + c) = a · b + a · c.

Note: Rings that are commutative under multiplication are called commutative rings.

Example: Ring without identity The set of even integers 2Z since 1 is not even.

Example: Ring of functions. For X a non-empty set and A any ring, the set of functions
f : X → A forms a ring R with operations (f + g)(x) = f(x) + g(x), (fg)(x) = f(x)g(x). R is
commutative if and only if A is commutative. R has identity 1 if and only if A has 1.

Example: Some other easy rings. Z,Q,R,C are all commutative rings. Z/nZ is a commutative
ring with identity 1.

Example: Trivial and Zero ring. Any abelian group is a trivial ring with the operation x·y = 0
for any x, y ∈ R.

Definition: Division Ring. A ring R with identity 1 ̸= 0 such that every x ∈ R has a
multiplicative inverse x–1 ∈ R with xx–1 = x–1x = 1 is a division ring.

Definition: Field. A field is a commutative division ring.

Proposition: Immediate properties of rings For any ring R:
(1) 0x = x0 = 0, ∀x ∈ R
(2) (–x)y = x(–y) = –(xy),∀x, y ∈ R
(3) (–x)(–y) = xy, ∀x, y ∈ R
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(4) if ∃1 ∈ R, then 1 is unique and –x = (–1)x, ∀x ∈ R.

Definition: Zero divisor. Let R be a ring. Let x ̸= 0. Then, x is a zero vicisor if ∃y ∈ R, y ̸= 0
such that xy = 0 or yx = 0.

Definition: Unit. Let R be a ring with identity 1. Then, x ∈ R is called a unit if there exists
y ∈ R such that xy = yx = 1. R× is the set of units in ring R. (R×,×) is a group under
multiplication called the group of units.

Lemma: If x ∈ R is a zero divisor then x is not a unit. If x ∈ R is a unit, then x is not a zero
divisor.

Corollary: Fields have no zero divisors.

Example: zero divisor. Let x ̸= 0, x ∈ Z and suppose x is relatively prime to n ∈ Z. Then, x̄ is
a zero divisor in Z/nZ.

Definition: Integral Domain. A commutative ring with identity 1 ̸= 0 such that it has
no zero divisor.

Proposition: Cancellation laws hold in integral domains. Let a, b, c ∈ R such that a is not
a zero divisor. If ab = ac, then either a = 0 or b = c. In other words, if a, b, c are elements
in an integral domain, then, ab = ac =⇒ a = 0 or b = c.

Proposition: Any finite integral domain is a field.

Definition: Subring. A subring of the ring R is a subgroup of R that is closed under
multiplication i.e S ̸= ∅ is closed under addition, for each x ∈ S, there exists an additive
inverse in S, 0 ∈ S and S is closed under multiplication.

Definition: Polynomial Rings. Let R be a commutative ring with identity 1. Let x be an
indeterminate. Then, R[x] is the ring of polynomials

∑n
i=1 aixi, n ≥ 0, ai ∈ R. If an ̸= 0,

degree of the polynomial is n. Monic polynomials are those with an = 1. R ⊂ R[x] is the
set of constant polynomials. R[x] is itself a commutative ring with identity (where 1 is the
same identity as in R).

- note: if S is a subring of R, then S[x] is a subring of R[x].

Proposition: immediate properties of polynomial rings. Let R be an integral domain.
Let p(x), q(x) be non-zero elements of R[x]. Then,
(1) degree p(x)q(x) = degree p(x)+ degree q(x).
(2) the units of R[x] are the same as the units of R
(3) R[x] is an integral domain.
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Definition: Ring homomorphisms. Let R and S be rings. A ring homomorphism f :
R → S is a map such that f(x + y) = f(x) + f(y), f(xy) = f(x)f(y), ∀x, y ∈ R. A bijective ring
homomorphism is called an isomorphism and we say R ∼= S.

Definition: Ideals. Let R be a ring, let r ∈ R and let I be a subset of R. Then, rI := {rx : x ∈
I}. Ir := {xr : x ∈ I}. A subset I of R is a left ideal of R if I is a subring of R and rI ⊆ I,∀r ∈ R.
A subset I of R is a right ideal of R if I is a subring of R and Ir ⊆ I,∀r ∈ R. If I is both a left
and right ideal, it is called an ideal of R.

If R is commutative, then RA = AR = RAR = (A).

Proposition: Quotient ring is a ring. Let R be a ring and let I be an ideal of R. Then
the additive quotient group R/I is a ring under the binary operations (r + I) + (s + I) =
(r + s) + I, (r + I)(s + I) = (rs + I), ∀r, s ∈ R. Conversely, if I is any subgroup of R such that
these two operations are well-defined, then I is an ideal of R.

Proposition: First Isomorphism Theorem for Rings.
(1)If ψ : R → S is a ring homomorphism, then ker(ψ) is an ideal of R, Im(ψ) is a subring of
S and R/ker(ψ) ∼= ψ(R).
(2) If I is an ideal of R, then the map R → R/I defined by r → r + I is a surjective ring
homomorphism with kernel I. This is the natural projection of R onto R/I. Every ideal is
the kernel of a ring homomorphism and vice-versa.

Definition: Proper ideal. An ideal I is proper if I ̸= R.

Example: R and {0} are ideals of R. nZ is an ideal of Z for any n ∈ Z.

Proposition:

Second Isomorphism Theorem for Rings. Let A be a subring and let B be an ideal of R.
Then, A + B is a subring of R, A ∩ B is an ideal of A and (A + B)/B ∼= A/(A ∩ B).

Third Isomorphism Theorem for Rings. Let I and J be ideals of R with I ⊆ J. Then, J/I is
an ideal of R/I and (R/I)/(J/I) ∼= (R/J).

Fourth/Lattice Isomorphism Theorem for Rings. Let I be an ideal of R. The correspon-
dence A ↔ A/I is an inclusion-preserving bijection between the sets of subrings A of R (if
A ⊆ B and both contain I, then A/I ⊆ B/I). Furthermore, A (subring containing I) is an
ideal of R iff A/I is an ideal of R/I.

Definition: Special ideals. Let R be a ring with identity 1. Let A be a subset of R. Let (A)
be the smallest ideal of R containing A.

(A) = ∩(I is an ideal, A ⊆ I)I
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. Define RA = {
∑

i riai : ri ∈ R, ai ∈ A, n ∈ Z+}. Define RA and RAR similarly. Prin-
ciple ideals are ideals generated by a single element. A finitely general ideal is an ideal
generated by a finite set. If R is commutative, RA = AR = RAR = (A).

(Important) Proposition: Let I be an ideal of R, where R is a ring with identity 1. (1) I = R
if and only if I contains a unit. (2) If R is commutative, then R is a field if and only if its
only ideals are the zero ideal {0} and R.

(Important) Corollary: If R is a field, then any non-zero ring homomorphism from R into
another ring is an injection.

Definition: Maximal Ideals An ideal M in an arbitrary ring R is called a maximal ideal if
M ̸= R and the only ideals containing M are M and R.

Proposition: In a ring with identity 1, every proper ideal is contained in a maximal ideal.

Sketch of proof: Suppose I is a proper ideal. Let S be the set of proper ideals containing I(S is
clearly non-empty and has partial order by inclusion). Let C be a chain in S and let J be the union
of all ideals in C. Show that J is an ideal - 0 ∈ J and elements are closed under subtraction and
left/ring multiplication by elements of R. Then, show that J is a proper ideal since otherwise 1 ∈ J
and therefore, 1 is in at least one of the ideals in C making that ideal not proper. Then, each chain
has an upper bound in S. Use Zorn’s lemma to conclude S has a maximal element which is our
maximal proper ideal containing I

Proposition: Let R be a commutative ring with identity 1. The ideal M is a maximal ideal
if and only if the quotient ring R/M is a field.

Sketch of proof: ideal M is maximal iff there are no ideals I st M ⊂ I ⊂ R. By lattice isomorphism,
ideals of R containing M correspond bijectively with the ideals of R/M, so M is maximal if and
only if the only ideals of R/M are 0 and R/M. But by a proposition above, R/M is a field iff the
only ideals are 0 and R/M.

Definition: Prime ideal. Suppose R is commutative with identity 1. An ideal P is called a
prime ideal if P ̸= R and whenever xy ∈ P, we have x ∈ P and/or y ∈ P.

Proposition: Assume R is commutative with identity 1 ̸= 0. Then, the ideal P is a prime
ideal in R if and only if the quotient ring R/P is an integral domain.

Proof: P is a prime ideal if and only if R̄ ̸= 0̄ (since P ̸= R) and āb = āb̄ = 0 implies either ā = 0 or
b̄ = 0 which is if and only if R/P is an integral domain.

Proposition: Assume R is commutative. Every maximal ideal of R is a prime ideal.

Proof: M is maximal implies R/M is a field and a field is an integral domain so M must be prime.
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(Skipping notes on Euclidean domains and only adding notes on PID, UFD insofar as they
seemed immediately important to the the Algebraic Geometry notes)

Definition: Principal Ideal Domain (PID). A PID is an integral domain in which every
ideal is principal.

Example: Z is a PID.

Proposition: Every non-zero prime ideal in a PID is a maximal ideal.

Corollary: If R is any commutative ring such that the polynomial ring R[x] is a PID, then
R is necessarily a field.

Definition: Irreducible, prime and associate. Let R be an integral domain.
(1) Let x ∈ R such that x is not a unit. Then x is irreducible in R if x = ab where a, b ∈ R
implies either a or b is a unit in R.
(2) A non-zero element x ∈ R is called a prime in R if the ideal (x) generated by x is a prime
ideal. Equivalently, x ̸= 0 is a prime if it is not a unit and whenever x divides ab ∈ R, either
x divides a or x divides b.
(3) Two elements x and y of R are associate if x = uy for some unit u ∈ R.

Proposition: In an integral domain, a prime element is always irreducible.

Proposition: prime = irreducible in PID. In a PID, a non-zero element x is a prime if and
only if it is irreducible.

Definition: Unique factorization domain (UFD) A unique factorization domain is an in-
tegral domain R in which every non-zero x ∈ R which is not a unit has the following
properties:
(1) x is a finite product of irreducible pi (not necessarily distinct) of R; x = p1 · · ·pr
(2) The decomposition is unique up to associates i.e x = q1 · · ·qm is another decomposi-
tion, then m = r and after renumpering pi is associate to qi for all i.

Example: A field F is a UFD.

Example: Every PID is a UFD

Example: When R is a UFD, R[x] is also a UFD.

Proposition: prime = irreducible in UFD. In a UFD, a non-zero element x is a prime if
and only if it is irreducible.

Proposition: Every PID is a UFD.
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B.2 Polynomial Rings

We already saw the following before:

Proposition 1: Let R be an integral domain. Then: (a) deg(p(x)q(x)) = deg(p(x))+deg(q(x))
given p(x), q(x) are non-zero. (b) The units of R[x] are the units of R. (c) R[x] is an integral
domain.

Proposition 2: Quotient of polynomial ring. Let I be an ideal of the ring R. Then,
R[x]/I[x] ∼= (R/I)[x]. In particular, if I is a prime ideal of R, then I[x] is a prime ideal
of R[x].

Proof: Consider map φ : R[x] → (R/I)[x] by taking each coefficient mod I/; this is easily seen to
be a ring homomorphism. Then, ker(φ) = I[x] proves first part. For the second, since I is prime,
R/I is integral domain (by previous proposition) so (R/I)[x] is an integral domain and so I[x] is a
prime ideal of R[x].

Note: It is not true that if I is a maximal ideal of R, then I[x] is a maximal ideal of R[x].
However, if I is maximal in R, then the ideal of R[x] generated by I and x is maximal in R[x].

Definition: Polynomial ring of more than one variables. The polynomial ring in the
variables x1, · · · , xn with coefficients in R denoted by R[x1, · · · , xn] is defined inductively
by R[x1, · · · , xn] = R[x1, · · · , xn–1][xn].

A polynomial in a polynomial ring of more than one variable is a finite sum of elements
of the form axd1

1 · · · xdn
n where a ∈ R, di ≥ 0 which are called the monomial terms. For

a monomial term, if a = 1, we call it a monic term. A monomial term of this form is of
degree d = d1 + · · · + dn and the n-tuple (d1, · · · , dn) is the multidegree of the term.

If f is a non-zero polynomial in n variables, the sum of all monomial terms in f of degree
k is called the homogenous component of f of degree k. If f has degree d, then f may be
written uniquely as the sum f0 + · · · + fd where fk is the homogenous component of f of
degree k.

Now we look at polynomials whose coefficients are in a field:

Theorem 3: Polynomial rings that are Euclidean Domains. Let F be a field. The poly-
nomial ring F[x] is a Euclidean Domain. If a(x), b(x) are two polynomials in F[x] with
b(x) ̸= 0, then there are unique q(x), r(x) ∈ F[x] such that a(x) = q(x)b(x) + r(x) with r(x) = 0
or degree r(x) < degree b(x).

Sketch of proof: Use induction. Let deg(a(x)) = n, deg(b(x)) = m. If a(x) = 0, then q(x) = r(x) =
0. If n < m, let q(x) = 0, r(x) = a(x). So let n ≥ m. Construct q(x) - if a(x) =

∑n
i=0 aixi, b(x) =
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∑m
i=0 bixi. Define a′(x) = a(x) – an

bm
xn–mb(x) designed to subtract leading term from a(x). By

inductive hypothesis, a′(x) = q′(x)b(x) + r(x). With q(x) = q′(x) + an
bm

xn–m. To prove uniqueness,
assume there is another decomposition with q1(x), r1(x) and leverage the fact that degree of f(x)g(x)
is the sum of degree f(x) and degree g(x).

Corollary 4: If F is a field, then F[x] is a Principal Ideal Domain (PID) an a Unique Factor-
ization Domain (UFD).

Now we look at polynomial rings that UFDs.

Proposition 5: Gauss’s Lemma. Let R be a UFD with a field of fractions F and let p(x) ∈
R[x]. If p(x) is reducible in F[x], then p(x) is reducible in R[x]. More precisely, if p(x) =
A(x)B(x) for some non-constant polynomials A(x), B(x) ∈ F[x], then there are non-zero
elements r, s ∈ F such that rA(x) = a(x) and sB(x) = b(x) both in R[x] and p(x) = a(x)b(x) is
a factorization in R[x].

Sketch of proof for R a field: Let p(x) = A(x)B(x) where on RHS, coefficients are in F. Multiply
both sides by a common denominator for all coefficients to get dp(x) = a′(x)b′(x) where on RHS
we have elements in R[x], d ̸= 0 ∈ R. If d is unit, we are done with a(x) = d–1a′(x)b′(x). Check
Dummit and Foote for the proof in the case where d is not a unit.

Corollary: Let R be a UFD. Let F be its field of fractions and let p(x) ∈ R[x]. Suppose the
greatest common divisor of the coefficients of p(x) is 1. Then p(x) is irreducible in R[x]
if and only if it is irreducible in F[x]. In particular, if p(x) is a monic poynomial that is
irreducible in R[x], then p(x) is irreducible in F[x].

Proof: By Gauss’s Lemma, if p(x) is reducible in F[x], then it is reducible in R[x]. Con-
versely, suppose the gcd of coefficients of p(x) is 1. If p is reducible with p(x) = a(x)b(x),
then neither a(x) nor b(x) are constant polynomials - this factorization also shows p(x) is
reducible in F[x].

Theorem: R is a UFD if and only if R[x] is a UFD.

Corollary: If R is a UFD, then a polynomial ring in an arbitrary number of variables with
coefficients in R is also a UFD.

Now we look at irreducible criteria of polynomials.

We will require the following throughout the AG notes:

Proposition: Let R be a field. The prime ideals of R[y] are the zero ideal (0), the ideals
(f(y)) where f is irreducible.

Proof: Given R is a field, R[x] is a PID. If (f) is a prime ideal in R[x], then f is prime which
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means f is irreducible.

Proposition: Let F be a field and let p(x) ∈ F[x]. Then p(x) has a factor of degree one if
and only if p(x) has a root in R i.e there is an α ∈ F with p(α) = 0.

Proof: If p(x) has a factor of degree 1, then since F is a field, we may assume the factor is of the
form (x – a), a ∈ F. Then, p(a) = 0. Conversely, if p(a) = 0, then by division algorithm in F[x] -
theorem 3 in this section - p(x) = q(x)(x – a) + r where r is constant and since p(a) = 0, r = 0 so
(x – a) is a factor.

Proposition: A polynomial of degree two or three over a field F is reducible if and only if
has a root in F.

Proposition: Let p(x) = a0 + a1x + · · · + anxn be a polynomial of degree n with integer
coefficients. If r/s ∈ Q is in its lowest term (i.e r and s are relatively prime integers) and
r/s is a root of p(x), then r divides the constant term and s divides the leading coefficient of
p(x) i.e r|a0 and s|an. In particular, if p(x) is a monic polynomial with integer coefficients
and p(d) ̸= 0 for all integers d dividing the constant term of p(x), then p(x) has no roots in
Q.

The following are very important results:

Proposition: Let I be a proper ideal in the integer domain R and let p(x) be a nonconstant
monic polynomial in R[x]. If the image of p(x) in (R/I)[x] cannot be factored in (R/I)[x]
into two polynomials of smaller degree, then p(x) is irreducible in R[x].

Proof: Suppose p(x) cannot be factored in (R/I)[x] but p(x) is reducible in R[x] so p(x) = a(x)b(x)
where both a(x) and b(x) are monic, nonconstant in R[x]. But then reducing the coefficients modulo
I gives a factorization in (R/I)[x] - contradiction.

Proposition: Einsenstein’s Criterion. Let P be a prime ideal of the integral domain R
and let f(x) = xn + an–1xn–1 + · · · + a1x + a0 be a polynomial in R[x] (n ≥ 1). Suppose
an–1, an, · · · , a1, a0 are all elements of P and suppose a0 is not an element of P2. Then f(x)
is irreducible in R[x].

Proposition: The maximal ideals in F[x] are the ideals (f(x)) generated by irreducible poly-
nomials in f(x). In particular, F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Proposition: Let g(x) be a nonconstant element of F[x] and let g(x) = f1(x)n1f2(x)n2 · · · fk(x)nk

be its factorization into irreducibles, where the fi(x) are distinct. Then, we have the fol-
lowing isomorphism of things:

F[x]/(g(x)) ∼= F[x]/(f1(x)n1) × F[x]/(f2(x)n2) × · · · × F[x]/(fk(x)nk)
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Proposition: I the polynomial f(x) has roots a1, ..., ak ∈ F (not necessarily distinct), then
f(x) has (x – a1) · · · (xak) as a factor. In particular, a polynomial of degree n in one variable
over a field F has at most n roots in R, even counted with multiplicity.

C Real Projective Space

We define the real projective space as follows: for n ≥ 1, define RPn = Sn/ ∼ with the
equivalence relation x ∼ y if and only if x = y or x = –y. It can also be seen as the space
attained by quotienting Rn+1\{0} under the equivalence relation x ∼ y if and only if x = λy
for some λ ∈ R and λ ̸= 0.

Therefore, RPn identifies each direction through the origin of the n-dimensional sphere
as unique points. We can also see that RPn contains “a copy of Rn". For example, if we
consider RPn, then for each point (x, y, z), we can consider the ratio x : y : z and then write
it as (x/z) : (y/z). This can be done unless z = 0. Given every line through the centre
meets z = 1 plane (unless the line is on the plane z = 0), we can then consider every line
as points on the plane z = 1.

An interesting observation is the appearance of the mobius band inside RP2. To see this,
let D be a closed disk of radius 1 in R2 i.e D := {x ∈ R2 : |x| ≤ 1}. Then, it is clear that
D\ ∼ is homeomorphic to RP2 (via projection). Now, let r ∈ (0, 1). We first cut out the
disk Dr of radius r from inside D to get an annulus A. Now, A\ ∼ is homeomorphic to
the mobius band.
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Theorem 109. The real projective space, RPn, is a compact, n-dimensional manifold.

Proof. First, we show that RPn is compact. Note that Sn is compact. Consider the quotient
map p : Sn −→ Sn\ ∼. Note that this mapping is continuous. To see this, let I be the identity
function on Sn\ ∼. Then, (I ◦ p)(x) = p(x). Now, given I is continuous, then I ◦ p is also
continuous =⇒ p is continuous. Since p : Sn −→ Sn\ ∼ is continuous and Sn is compact,
therefore, RPn is compact.

Next, we show RPn is Hausdorff. Consider any [x], [y] in RPn such that [x] ̸= [y]. This
means x ̸= y, x ̸= –y in Sn. Now, in Sn, consider the following open sets - Ux which contains
x, U–x which contains –x, Uy which contains y and U–y which contains –y. Given Sn is
Hausdorff, we can let these sets be pairwise disjoint. Furthermore, p(Ux), p(U–x), p(Uy), p(U–y)
are all open since. Furthermore, p(Ux) ∪ p(U–x) contains x and is open. We claim (p(Ux) ∪
p(U–x)) ∩ (p(Uy) ∪ p(U–y)) = ∅. This is because p(Ux) ∩ (p(Uy) ∪ p(U–y)) = ∅ and p(U–x) ∩
(p(Uy)∪p(U–y)) = ∅. For the first part, suppose [z] ∈ p(Ux)∩(p(Uy)∪p(U–y)) =⇒ ∃a ∈ Ux
such that p(a) = z and ∃b ∈ Uy such that p(b) = z and ∃c ∈ U–y such that p(c) = z. Now
p(a) = p(b) implies a = b or a = –b. If a = b, then Ux ∩ Uy ̸= ∅. So a = –b. By similar logic
a = –b′ =⇒ –b = –b′ =⇒ Uy ∩ U–y ̸= ∅ which is also a contradiction.

Next, we know RPn is second countable since Sn is second countable.

Now, we show RPn is locally Euclidean and has dimension n. Let [x] ∈ RPn. Without
loss of generality, suppose xk ̸= 0 (if it is, then we can always rotate the space to ensure it
is not 0). Then consider the following function π([(x0, x1, ..., xn]) =

(
x1xk
|xk| , ..., xnxk

|xk|

)
. This

function is bijective from the set Ak := {[x] ∈ RPn|xk ̸= 0} to Dn := {x ∈ Rn||x| < 1}.
Its inverse is given by π–1((x1, ..., xn)) = (x1, ..., xk–1,

√
1 – |x|2, xk, ..., xn). Note that RPn =

∪k=1,..,n+1Ak. Therefore π maps RPn to all of Rn. Given π is continuous, RPn is locally
Euclidean with dimension n.

Theorem 110. The real projective space, RPn, is a smooth manifold.

Proof. We denote points in the real projective space as [x0 : x1 : · · · : xn] which represents
the equivalence class of (x0, x1, ..., xn) ∈ Rn+1\{0}. We will construct an atlast on RPn with
n + 1 charts (Ui,ϕi) for i = 0, .., n. Define Ui = {[x0 : x1 : · · · : xn]|xi ̸= 0}. Then, as before,
RPn = ∪iUi. Now, we define the homeomorphism:

ϕi : Ui −→ Rn

such that ϕi([x0 : .... : xn]) = (x0
xi

, x1
xi

, · · · , xi–1
xi

, xi+1
xi

, · · · , xn
xi

). We prove, now, that the transi-

tion functions, i.e ϕj◦ϕ–1
i , are smooth. Let ϕi([x0 : .... : xn]) = (x0

xi
, x1

xi
, · · · , xi–1

xi
, xi+1

xi
, · · · , xn

xi
) =:

(y0, · · · , yi–1, yi+1, · · · , yn) and let
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ϕj([x0 : · · · : xn]) = (x0
xj

, · · · ,
xj–1
xj

,
xj+1
xj

, · · · , xn
xj

) = (y0
yj

, · · · , 1
yj

, · · · , yn
yj

). Therefore, our transi-

tion function becomes:

(ϕj ◦ ϕ–1
i )(y0, · · · , yn) =

(
y0
yj

, · · · ,
1
yj

, · · · ,
yn
yj

)

which is smooth. This gives us an atlas and therefore, implicitly defines a smooth structure
on RPn.

D Complex Projective Space

Let X = Cn+1\0. Now, define the following equivalence class on X: x ∼ y if and only if
x = λy for some λ ∈ C\{0}. Then, the complex projective space is defined as CPn = X/ ∼.

Note that Cn+1 is isomorphic to R2n+2. Therefore, if p ∈ Cn+1 with (p1+ip2, p3+ip4, ..., p2n+1+
ip2n+2), then we can write p in R2n+2 as p = (p1, p2, ...., p2n2

). Now, suppose p ∼ p′ with
p = λp′ where λ = λ1 + iλ2. Then, in R2n+2, after expanding and simplifying, we see that
(p1λ1 – p2λ2, p2λ1 + p1λ2, ....) = (p′

1, p′
2, ....). This tells us that, for the first two coordinates,

we have the following relation:

[
λ1 –λ2
λ2 λ1

] [
p1
p2

]
=
[

p′
1

p′
2

]
. (1)

Similarly, for the third and fourth coordinates, we also have the similar relation. Therefore,
the equivalence class of p in R2n+2 can be written as the set consisting of



[
λ1 –λ2
λ2 λ1

]
[
λ1 –λ2
λ2 λ1

]
[
λ1 –λ2
λ2 λ1

]
[
λ1 –λ2
λ2 λ1

]





p1
p2
.
.
.
.
.
.

p2n+1
p2n+2


(2)

for any λ1,λ2 ∈ R.
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The complex projective space is the space of all complex lines through the origin or the set
of all one-dimensional subspace. Furthermore, if we consider λ to have unit length, we
can also write CPn as S2n+1/U(1) where U(1) is the unitary group.

Theorem 111. The complex projective space, CPn, is a compact 2n-dimensional manifold.

Proof. Let π : X −→ X/ ∼.

First, we show that this space is compact. Consider the sphere S2n+1. This sphere is
compact. The function that maps points on the sphere to X/ ∼ is continuous (by the same
reasoning as provided in the previous proof). Furthermore, the function is surjective, since
for any equivalence class in X/ ∼, there exists a point that is on the surface of the sphere.
Therefore, the image space of this function, X/ ∼ is compact too.

Next, we show that this space is Hausdorff. Consider any x ∈ S2n+1. Then, its equivalence
class is [x] = {y ∈ X|y = λx,∀λ ∈ C\{0}} =: Ox. Given the function (λ, x) −→ λx is
continuous and since S2n+1 is compact, therefore, [x] is compact. Given [x] ̸= [y], this
means Ox ∩ Oy = ∅ with both Ox, Oy being compact. On the other hand, since S2n+1

is Hausdorff, there exists open sets Ox ⊂ Ux and Oy ⊂ Uy with y ∈ Uy, x ∈ Ux and
Ux ∩ Uy = ∅.

Now, Ūy is closed (given this is the closure of Uy) =⇒ π(Ūy) is closed. On the other hand,
define U′

x := CPn\π(Ūy), which must be open in CPn. Furthermore, define U′
y := π(Uy),

which must be open. Clearly, U′
x ∩ U′

y = ∅. All that’s left to show is [x] ∈ U′
x and [y] ∈ U′

y.
Let us show the first one. S2n+1 is compact and Hausdorff, while Ūx is closed, so Ūx is
compact. On the other hand, Ox is compact. Given both Ox and Ūy are compact, we find
two disjoint open sets U and W such that Ox ⊂ U and Ūy ⊂ W and U ∩ W = ∅. Therefore,
Ox ∩ W = ∅. Now, [x] ∈ Ox implies [x] ̸∈ π(W). Therefore, [x] /∈ π(Ūy). This means,
[x] ∈ CPn\π(Ūy). Therefore, [x] ∈ U′

x. Similarly, [y] ∈ U′
y.

Now, we show that this space is locally Euclidean. Consider the following function:

[x1, · · · , xn+1] −→ 1
xk

[x1, ..., xk–1, xk+1, .., xn].

Then, this is a function from the set Ak := {[x] ∈ CPn|xk ̸= 0} to Cn. The inverse of this
function is:

(x1, ..., xn) −→ [x1, ..., xk–1, 1, xk+1, ..., xn].

Therefore, this is a homeomorphism. Now, CPn = ∪k=1,...,n+1Ak is open and so our func-
tions maps all of the space too all of Cn which is isomorphic to R2n. Therefore, CPn is
locally Euclidean with dimension n.
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Given, CPn = ∪k=1,...,n+1Ak, the space is a finite union of second countable spaces, so CPn

is second countable.

Theorem 112. The complex projective space, CPn, is a smooth manifold.

Proof. This can be proven with the same atlas as we defined for the real projective space.
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