
Policy Gradient Methods

Jubayer Ibn Hamid

In this note, I will cover the basics of vanilla policy gradient methods and trust regional
policy optimisation.

1 Introduction

In policy gradient methods, we directly parametrise the policy to be πθ(a|s) = Pθ(a|s). Our
goal is then to find πθ that maximises returns.

For policy-based methods, we have no value function but only a learned policy. For actor-
critic methods, we have both a learned value function and a learned policy.

Policy gradient methods are useful for generating stochastic policies but they are often hard to
evaluate and can be high variance. We often use Gaussian policies (especially for continuous
action spaces) which is parametrised as a ∼ N (µθ(s), σ

2).

2 Vanilla Policy Gradient Methods

In this note, we will cover episodic tasks. Let V (θ) = V (s0, θ), where s0 is the starting state
(which we consider to be fixed for simplicity) and the dependency on θ specifies that the
value depends on the policy πθ.

Now, we want to maximize V (θ):

V (θ) = V (s0, θ)

=
∑
a

πθ(a|s0)Q(s0, a; θ)

=
∑
τ

Pθ(τ)R(τ)

1

where Q(s0, a; θ) is the expected reward attained under the policy πθ after taking action a
from state s0. Pθ(τ) is the probability of trajectory τ = (s0, a0, r0, s1,, sT−1, aT−1, rT−1, sT)
under policy πθ and R(τ) is the total reward from trajectory τ .

Lemma 1. ∇θV (θ) =
∑

τ R(τ)Pθ(τ)∇θ log(Pθ(τ))

Proof.

∇θV (θ) = ∇θ

∑
τ

Pθ(τ)R(τ)

=
∑
τ

R(τ)∇θPθ(τ)

=
∑
τ

R(τ)
Pθ(τ)

Pθ(τ)
∇θPθ(τ)

=
∑
τ

R(τ)
Pθ(τ)

Pθ(τ)
∇θPθ(τ)

=
∑
τ

R(τ)Pθ(τ)∇θ log(Pθ(τ))

Now, using Lemma 1, we can get an approximation for our update rule:

∇θV (θ) ≈ 1

m

m∑
i=1

R(τ (i))∇θ log(Pθ(τ
(i))).

However, we still don’t know how to compute the gradient of the log-probability. For that,
we need the following lemme:

Lemma 2. ∇θ log(Pθ(τ
(i))) =

∑T−1
t=0 ∇θ log πθ(at|st)

Proof.

∇θ log(Pθ(τ
(i)) = ∇θ log(µ(s0)

T−1∏
t=0

πθ(at|st)P (st+1|st, at))

= ∇θ log(µ(s0)) +
T−1∑
t=0

log πθ(at|st) + logP (st+1|st, at)

=
T−1∑
t=0

∇θ log(πθ(at|st))

2

With Lemma 2, we get the following update rule:

∇θV (θ) =
∑
τ

R(τ)Pθ(τ)

(
T−1∑
t=0

∇θ log(πθ(at|st))

)

which can be approximated as

∇θV (θ) =
m∑
i=0

R(τ (i))

(
T−1∑
t=0

∇θ log(πθ(a
(i)
t |s(i)t))

)

We generalize this approach through the policy gradient theorem [1]. For an episodic task,
let η(s) be the number of time-steps spent in state s within a single episode. If µ0(s) is
the initial state distribution, then η(s) = µ0(s) +

∑
s′ η(s

′)
∑

a πθ(a|s′)p(s|s′, a). To turn this
into a probability distribution, which we call the on-policy distribution i.e the fraction of
time-steps spent in a state s, we get µ(s) = η(s)∑

s′ η(s
′)

Theorem 3. Suppose, our task is episodic. For simplicity, we let γ = 1. Furthermore, sup-
pose, our start state is s0 for all trajectories. Then, ∇θV (θ) ∝

∑
s µ(s)

∑
a qπθ

(s, a)∇θπθ(a|s)

Proof.

∇θV (θ) = ∇θ

(∑
a

πθ(a|s)qπθ
(s, a)

)
=
∑
a

(∇θπθ(a|s)) qπθ
(s, a) + πθ(a|s)∇θqπθ

(a, s)

=
∑
a

(∇θπθ(a|s)) qπθ
(s, a) + πθ(a|s)∇θ

(∑
s′,r

p(s′, r|s, a) (r + Vπθ
(s′))

)

=
∑
a

(∇θπθ(a|s)) qπθ
(s, a) + πθ(a|s)

(∑
s′,r

p(s′, r|s, a)∇θ (Vπθ
(s′))

)
=
∑
a

∇θπθ(a|s)qπθ
(s, a)+

πθ(a|s)
∑
s′

p(s′|s, a)

(∑
a′

(∇θπθ(a
′|s′)qπθ

(s′, a′)) + πθ(a
′|s′)

∑
s′′

P (s′′|s′, a′)∇θVπθ
(s′′)

)

=
∑
x∈S

∞∑
k=0

P(s0 −→ x, k, πθ)
∑
a

∇θπθ(a|x)qπθ
(x, a)

3

where P(s −→ x, k, πθ) is the probability of reaching state x from x in k steps under policy πθ.

∇θV (θ) =
∑
s

∞∑
k=0

P(s0 −→ s, k, πθ)
∑
a

∇θπθ(a|s)qπθ
(s, a)

=
∑
s

η(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)

=
∑
s′

η(s′)
∑
s

η(s)∑
s′ η(s

′)

∑
a

∇θπθ(a|s)qπθ
(s, a)

=
∑
s′

η(s′)
∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)

∝
∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)

Thefore, our algorithm so far is:

∇θV (θ) =
∑
τ

R(τ)Pθ(τ)

(
T−1∑
t=0

∇θ log(πθ(a
t|st))

)
where at, st are in the trajectory τ . We can now approximate this as:

∇θV (θ) ≈ 1

m

m∑
i=1

R(τ (i))

(
T−1∑
t=0

∇θ log(πθ(a
(i)
t |s(i)t))

)

This algorithm is, however, very noisy since our trajectory samples are often quite noisy. To
do this, we use several modifications.

2.1 REINFORCE (monte carlo policy gradient)

So far, our approach has been to calculate ∇θV (θ) = ∇θEτ [R(τ)] which we calculated as:

∇θV (θ) = ∇θEτ [R(τ)] = ∇θ

∑
τ Pθ(τ)R(τ) = Eτ

[∑T−1
t=0 rt

(∑T−1
t=0 ∇θ log(πθ(a

t|st))
)]

.

Instead, what if we maximized the reward at a single timestep. Through a similar process of
derivation, we can write ∇θE[rt′] = E[rt′

∑t′

t=0 ∇θ log(πθ(at|st))]. We can then sum over all t′

4

to get:

∇θV (θ) = ∇θE[R] = E

[
T−1∑
t′=0

rt′
t′∑

t=0

∇θ log(πθ(at|st))

]
= E

[
T−1∑
t=0

∇θ log(πθ(at|st))
T−1∑
t′=t

rt′

]
.

Now, we use G
(i)
t =

∑T−1
t′=t rt′ to finally write:

∇θV (θ) ≈ 1

m

m∑
i=1

T−1∑
t=0

∇θ log(πθ(at|st))G(i)
t

We can derive this from the policy gradient theorem as follow:

∇θV (θ) ∝
∑
s

µ(s)
∑
a

qπθ(s,a)∇θπθ(a|s)

= Est∼πθ

[∑
a

qπθ
(st, a)∇θπθ(a|st)

]

= Est∼πθ

[∑
a

qπθ
(st, a)πθ(a|st)

∇θπθ(a|st)
πθ(a|st)

]

= Est∼πθ

[
Eat∼πθ

[
qπθ

(st, at)
∇θπθ(at|st)
πθ(at|st)

|st
]]

= Eπθ

[
qπθ

(st, at)
∇θπθ(at|st)
πθ(at|st)

]
= Eπθ

[
Eπθ

[
Gt

∇θπθ(at|st)
πθ(at|st)

|st, at
]]

= Eπθ

[
Gt

∇θπθ(at|st)
πθ(at|st)

]
where in the second last line we used the fact that Eπθ

[Gt|st, at] = qπθ
(st, at).

2.2 REINFORCE with baseline

We introduce a baseline to further reduce variance:

∇θV (θ) ≈ Eτ

[
T−1∑
t=0

∇θ log(πθ(at|st))
T−1∑
t′=t

rt′ − b(st)

]
where we usually select b(st) = E[rt+rt+1+...+rT−1]. We could also use a learned state-action
value function parametrized by ϕ, vϕ(st) =: b(st).

5

2.3 Actor-Critic Methods

Actor-critic methods use a learned value function vϕ(st) but not just for baseline. Instead,
we use it for an approximation of the rewards too:

∇θV (θ) ≈ Eτ

[
T−1∑
t=0

∇θ log(πθ(at|st))(r(st, at) + vϕ(st+1)− b(st))

]

≈ Eτ

[
T−1∑
t=0

∇θ log(πθ(at|st))(Aπθ(st, at))

]

where Aπθ(st, at) := qπθ(st, at)− V πθ(st) is our advantage function.

2.4 Pseudocode for ”Vanilla” Policy Gradient Algorithm

Initialize policy parametre θ and baseline b

for iteration=1,2,... do:

Collect a set of trajectories under current policy

For each timestep t in each trajectory T (i), compute:

Gi
t =

T−1∑
t′=t

rit′

Ai
t = Gi

t − b(st)

Refit the baseline by minimizing
∑
t,i

||b(st)−Gi
t||2

Update policy using policy gradient estimate:

Gradient is equal to sum of the terms ∇θ log(πθ(at|st))At

2.5 Notes on Continuing Problems

Suppose, our task is no longer episodic. In this case,

V (θ) = lim
h−→∞

1

h

h∑
t=1

Eπθ
[Rt] = lim

t−→∞
Es,a∼πθ

[Rt]

6

where µ(s) := limt−→∞ P(st = s|a0:t ∼ πθ). In the continuing case, we define

Gt := Rt+1 − V (θ) +Rt+2 − V (θ) + · · ·

and using this, we define, Vπθ
(s) := Eπθ

[Gt|st = s], qπθ
(s, a) = Eπθ

[Gt|st = s, at = a].

We prove the following theorem, which is analogous to the episodic setting:

Theorem 4. ∇θV (θ) ∝
∑

s µ(s)
∑

a qπθ
(s, a)∇θπθ(a|s)

Proof.

∇θVπθ
(s) = ∇

[∑
a

πθ(a|s)qπθ
(s, a)

]
=
∑
a

[∇θπθ(a|s)qπθ
(s, a) + πθ(a|s)∇θqπθ

(s, a)]

=
∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)∇θ

∑
s′,r

P (s′, r|s, a)(r − V (θ) + Vπθ
(s′))

]

=
∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)[−∇θV (θ) +
∑
s′

P (s′|s, a)∇θVπθ
(s′)]

]

∇θV (θ) =
∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)
∑
s′

P (s′|s, a)∇θVπθ
(s′)

]
−∇θVπθ

(s)

Now, the left hand side is independent of s, so we can do a weighted sum over s (weighted

7

by µ(s):

∑
s

µ(s)∇θV (θ) =
∑
s

µ(s)

(∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)
∑
s′

P (s′|s, a)∇θVπθ
(s′)

]
−∇θVπθ

(s)

)
∇θV (θ) =

∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)+∑

s

µ(s)
∑
a

πθ(a|s)
∑
s′

P (s′|s, a)∇θVπθ
(s′)−

∑
s

µ(s)∇θVπθ
(s)

=
∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)+∑

s′

∑
s

µ(s)
∑
a

πθ(a|s)P (s′|s, a)∇θVπθ
(s′)−

∑
s

µ(s)∇θVπθ
(s)

=
∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a) +

∑
s′

µ(s′)∇θVπθ
(s′)−

∑
s

µ(s)∇θVπθ
(s)

=
∑
s

µ(s)
∑
a

qπθ
(s, a)∇θπθ(a|s)

where in the second last line we used the fact that µ(s′) =
∑

s µ(s)
∑

a πθ(a|s)P (s′|s, a).

I find this to be a very interesting result - the fact that the same result holds for both episoding
and non-episodic tasks after the simple, understandable re-definition of Gt. In fact, the new
way of seeing Gt is akin to the introduction of baselines in methods like REINFORCE.

Now, we move on to the more advanced policy gradient methods.

3 Performance Difference Lemma

We want to prove a few results that are building blocks for trust regional policy optimisation.

Firstly, note that the probability of sampling any particular trajectory τ = (s0, a0, r0, s1, a1,)
is Pθ(τ) =

∏∞
i=0 πθ(ai|si)P (si+1|si, ai). The probability of sampling a particular trajectory τ

such that st = s is Pθ(st = s) =
∑

a0

∑
s1
...
∑

st−1

∑
at−1

(∏T−1
i=1 πθ(ai|si)P (si+1|si, ai)

)
.

Let the distribution over all states induced by πθ be:

dπθ(s) := (1− γ)
∞∑
t=0

γtPθ(st = s).

8

Lemma 5. Eτ∼Pθ
[
∑∞

t=0 γ
tf(st, at)] =

1
1−γ

Es∼dπθ

[
Ea∼πθ(·|s) [f(s, a)]

]
Proof.

Eτ∼Pθ

[
∞∑
t=0

γtf(st, at)

]
=
∑
τ

Pθ(τ)
∞∑
t=0

γtf(st, at)

=
∑
τ

∞∏
i=0

πθ(ai|si)P (si+1|si, ai)
∞∑
t=0

γtf(st, at)

=
∑
a0

∑
s1

∑
a1

· · ·
∞∏
i=0

π(ai|si)P (si+1|si, ai)
∞∑
t=0

γtf(st, at)

=
∑
a0

πθ(a0|s0)f(s0, a0) + γ
∑
a0

∑
s1

∑
a1

πθ(a0|s0)P (s1|s0, a0)πθ(a1|s1)f(s1, a1) + · · ·

=
∞∑
t=0

γt
∑
a0

∑
s1

∑
a1

· · ·
∑
st

∑
at

∑
st+1

t∏
i=0

πθ(ai|si)P (si+1|si, ai)f(st, at)

=
∞∑
t=0

γt
∑
st+1

(· · ·) f(st, at)

=
∞∑
t=0

γt (· · ·) f(st, at)

=
∞∑
t=0

γt
∑
st

∑
at

(∑
a0

· · ·
∑
st−1

∑
at−1

t−1∏
i=0

πθ(ai|si)P (si+1|si, ai)

)
πθ(at|st)f(st, at)

=
∞∑
t=0

γt
∑
st

∑
at

Pθ(st)πθ(at|st)f(st, at)

=
1

1− γ
(1− γ)

∞∑
t=0

γt
∑
st

Pθ(st)
∑
at

πθ(at|st)f(st, at)

=
1

1− γ
(1− γ)

∞∑
t=0

γt
∑
st

Pθ(st)Ea∼πθ
[f(st, a)]

=
1

1− γ
Es∼dπθ [Ea∼πθ

[f(st, a)]]

Theorem 6. (Performance Difference Lemma)

Vπ(s0)− Vπ′(s0) =
1

1− γ
Es∼dπ

[
Ea∼π(s)

[
Aπ′

(s, a)
]]

9

where the advantage function is Aπ(s, a) := qπ(s, a)− V π(s).

Proof.

Vπ(s0)− Vπ′(s0)

= Eτ∼Pπ

[
∞∑
t=0

γtR(st, at)

]
+ Eτ∼Pπ

[
∞∑
t=0

γt+1Vπ′(st+1)

]
− Eτ∼Pπ

[
∞∑
t=0

γt+1Vπ′(st+1)

]
− Vπ′(s0)

= Eτ∼Pπ

[
∞∑
t=0

γt(R(st, at) + γVπ′(st+1))−
∞∑
t=0

γt+1Vπ′(st+1)− Vπ′(s0)

]

Now, we expand the first term:

Eτ∼Pπ

[
∞∑
t=0

γt (R(st, at) + γVπ′(st+1))

]

=
∞∑
t=0

γtEτ∼Pπ

[
R(st, at) + γV π′

(st+1|st, at)
]

=
∞∑
t=0

γtEst∼Pπ

[
Eat∼Pπ

[
Est+1∼Pπ

[
R(s, a) + γV π′

(st+1)|s = st, a = at

]
|a = at

]
|s = st

]
=

∞∑
t=0

γtEst,at∼Pπ

[
R(s, a) + γ

∑
st+1

P (st+1|st, at)V π′
(st+1)|s = st, a = at

]

=
∞∑
t=0

γtEτ∼Pπ

[
Qπ′

(s, a)|s = st, a = at

]
= Eτ∼Pπ

[
∞∑
t=0

γtQπ′
(st, at)

]

Therefore, we get

V π(s0)− V π′
(s0) = Eτ∼Pπ

[
∞∑
t=0

γt
(
Qπ′

(st, at)− V π′
(st)
)]

= Eτ∼Pπ

[
∞∑
t=0

γtAπ′
(st, at)

]
=

1

1− γ
Es∼dπ

[
Ea∼π

[
Aπ′

(s, a)
]]

10

4 Brief Notes on TRPO and PPO

There are two major issues with vanilla policy gradient methods. Firstly, it is difficult to
optimize in the sense that it is difficult to find the right step size to use in gradient descent.
The input data distribution is non-stationary - you sample trajectories using a learned policy,
then you use those samples to update your policy, then you use this updated policy to
sample new trajectories. However, if, at any point in time, you use a set of bad samples and
therefore, your optimisation step is wrong, this could lead to performance collapse - with
the bad samples, you take a ”wrong step” to get a poor policy, with which you sample new
trajectories which are also poor which you then use to optimise again. The second issue is that
the algorithm is sample inefficient - with any particular set of sampled trajectories, we carry
out one step of gradient descent and then throw those samples out. For future optimisation
steps, we sample new trajectories. Although we have made some modifications to the basic
vanilla PG algorithm like we found the actor-critic methods, they are still insufficient in
completely curbing these issues.

We now derive the building blocks of Trust Region Policy Optimisation (TRPO): We already
saw the performance difference lemme:

Vπ′ − Vπ =
1

1− γ
Es∼dπ′ [Ea∼π′ [Aπ(s, a)]]

Now, suppose, our current policy is π. In our next step, we essentially want to maximize the
difference between Vπ′ − Vπ. Therefore,

argmax
π′

Vπ′ − Vπ = argmax
π′

1

1− γ
Es∼dπ′ [Ea∼π′ [Aπ(s, a)]]

= argmax
π′

1

1− γ
Es∼dπ′

[
Ea∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]]
≈ argmax

π′

1

1− γ
Es∼dπ

[
Ea∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]]
=: argmax

π′
Lπ(π

′)

where, in the second last line, we made the approximation dπ
′ ≈ dπ. This approximation

only holds true if

||Vπ′ − Vπ − Lπ(π
′)|| ≤ C

√
Est∼π [DKL(π(·|st)||π′(·|st))]

11

With this, TRPO maximises Lπ(π
′) subject to Es∼π [DKL(π(·|s)||π′(·|s))] ≤ δ. Note that, in

actual implementation, we use a learned approximation for the advantage function.

Also note that we get monotonic improvement since the KL divergence is zero when π′ = π
whereas Lπ(π) = 0 too, therefore, the performance of π′ is at least as good as π.

PPO slightly modifies this - instead of placing a harsh constraint in the optimization pro-
cess (which requires conjugate gradient descent otherwise), instead PPO brings in 2 vari-

ants. The first is to maximize Est∼dπ ,at∼π

[
π′(at|st)
π(at|st) A

π(st, at)− β ·DKL(π
′(·|st)||π(·|st))

]
. If

the KL-divergence is too high, we adaptively increase β and if it is small, then we de-
crease β. The other variant is as follows - define rt(θ) :=

πθ′ (at|st)
πθ(at|st)

. Then, maximize

Eτ∼πθ

[∑T−1
t=0 [min(rt(θ)A

πθ(st, at), clip(rt(θ), 1− ϵ, 1 + ϵ)Aπθ(st, at))]
]
.

5 References

[1] RS Sutton, AG Barto. Reinforcement learning: An introduction. MIT Press. 2018.

[2] Emma Brunskill’s lectures on Policy Gradient Methods, CS 234: Reinforcement Learning,
Stanford 2023.

[3] John Schulman’s lecture titled ”Deep RL Bootcamp Lecture 5: Natural Policy Gradients,
TRPO, PPO”. https://www.youtube.com/watch?v=xvRrgxcpaHY.

[4] John Schulman and Sergey Levine and Philipp Moritz and Michael I. Jordan and Pieter
Abbeel. Trust Region Policy Optimization. 2017.

[5] John Schulman and Filip Wolski and Prafulla Dhariwal and Alec Radford and Oleg
Klimov. Proximal Policy Optimization Algorithms. 2017.

12

https://www.youtube.com/watch?v=xvRrgxcpaHY

	Introduction
	Vanilla Policy Gradient Methods
	REINFORCE (monte carlo policy gradient)
	REINFORCE with baseline
	Actor-Critic Methods
	Pseudocode for "Vanilla" Policy Gradient Algorithm
	Notes on Continuing Problems

	Performance Difference Lemma
	Brief Notes on TRPO and PPO
	References

