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Preface

This document is a combination of notes from CS 224R taught by Prof. Chelsea Finn at
Stanford University, CS 234 taught by Prof. Emma Brunskill at Stanford University, and CS
285 taught by Prof. Sergey Levine at UC Berkeley, as well as reading notes from various papers
(in particular, Richard Sutton and Andrew Barto’s ”Reinforcement Learning: An Introduction”
[1]).

Although these are reading notes, there may be various errors throughout, both minor and
major, which did not appear in the original works that I was reading. If you find any, please
let me know by sending me an email at jubayer@stanford.edu. I have also not been able
to stick to the same notation throughout these notes and I apologize for that - in my defence,
reinforcement learning is notorious for a lack of universal notation. Hopefully, the inconsistencies
are not too troublesome.
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1 Markov Decision Processes

1.1 Framework

For the majority of these notes, we will consider the framework of a Markov Decision Process
(MDP), represented as ⟨S,A, p, r, ρ0, γ,H⟩, where S is the state space, A is the action space, p
is the transition dynamics, R is the reward function, ρ0 is the initial state distribution, γ ∈ [0, 1]
is the discount factor and H is the task horizon (which could be positive infinity).

In this setting, the agent interacts with the environments continually which results in observed
rewards. We say that the agent interacts with the environment at time steps t ∈ Z+ (the set of
positive integers).

The reward function is r(st, at) = E[r|St = st, At = at] i.e., the expected reward from taking an
action from the current state. Here we are assuming that the reward after taking action at from
state st has a distribution and r(st, at) is the mean of that distribution. However, the reward
could also be deterministic in which case the mean would collapse to the deterministic value.
Eitherways, we will use the shorthand rt := r(st, at).

A finite MDP is an MDP such that S,A and R are finite sets. In finite MDPs, the transition
probabilities and the distribution over rewards are discrete distributions.

The MDP framework is a neat abstraction of sequential decision-making. As [1] describes, the
action can be low-level (e.g. voltages applies to the motors of a robot arm) or high-level decisions
(e.g. spend more money on a book or not). The states can be low-level sensations (e.g. direct
sensory readings) or high-level information (e.g. symbolic descriptions of objects in a room or
even images).

Definition 1. (Policy). A policy refers to an agent’s distribution over actions at each state i.e.,

π(a|s) := P (At = a|St = s).

Note that a policy can be deterministic too, in which case π(a|s) can be written as a Dirac-delta
distribution.

An episode refers to ”one play of the game” i.e., our agent ends up in the terminal state or the
agent has taken H actions after which the environment is reset. For example, a game of Chess is
an episodic task - even if the agent plays multiple games, the next episode begins independently
of how the previous episode went. We sometimes denote the set of all terminal states as S+.

Goal of reinforcement learning: Our agent seeks to maximize the expected discounted sum
of rewards i.e.

max
π

E

[
H∑
t=0

γtrt | π

]
.

Note, the expectation is taken over the distribution of the random variables st, at, st+1, at+1, . . .
induced by transition dynamics p(st′+1 | st′ , at′) and the policy π(at′ |st′) for all t′ ∈ [0, H]. Also
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note that the goal is not to maximize immediate reward but the cumulative reward in the long
run.

1.2 Values

Definition 2. (Return). The total return from a trajectory from time t ownards is

Gt = rt + rt+1 + · · ·+ rH

ifH is finite. When we use the discounted sum of rewards (especially for non-episodic/continuing
tasks), one can define the total discounted return even for infinite horizon tasks

Gt = rt + γrt+1 + γ2rt+2 + · · · =
∞∑
k=0

γkrt+k.

Then, we see that the goal of reinforcement learning is to maximize the expected total return
from a trajectory. For most of these notes, I will try to be consistent and assume that H is
infinite for the sake of simplicity.

Note: if γ < 1, then Gt is finite as long as the rewards rt′ ,∀t′, are boounded. We either require
horizon H to be finite (episodic tasks) or, if H = ∞ (continuing tasks), we require γ < 1.
Otherwise, the value Vπ(s) could blow up.

Note that we also have the following: Gt = rt + γGt+1.

Definition 3. (Optimal Policy). The optimal policy is defined as:

π∗(a|s) = argmax
π

Eπ

[∑
t

γtrt | π, s

]

Now, we introduce some more constructions that help express the goal of reinforcement learning
- maximizing the expected (discounted) sum of rewards. To do so, we define the following:

Definition 4. Value function. Given a policy π, the value function of π refers to the expected
sum of (discounted) rewards when starting from a given state s and acting according to π. For
generality, suppose H =∞, then this can be written as:

Vπ(s) = Eπ

[ ∞∑
t=0

γtRt

∣∣∣π, S0 = s

]
.

Note that the expectation is taken over trajectories s0, a0, r0, s1, a1, r1, · · · where at′ ∼ π(· | st′)
and st′+1 ∼ p(· | st′ , at′) for all t′. Furthermore, note that the value of the terminal state is
always zero (since no action is taken at the terminal state and, therefore, no reward is observed).
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(This notation is not universal; sometimes people write V π(s), vπ(s) or V (s;π) to mean the
same thing.)

Lemma 1. We have the following recursive relationship for the value function:

Vπ(s) = E a∼π(a|s)
s′,r∼P (s′,r|s,a)

[r + γVπ(s
′) | S0 = s] .

This is called the Bellman equation for V π.

Proof. The derivation is as follows:

Vπ(s) = Eπ

[ ∞∑
t=0

γtrt|s0 = s

]
.

= Eπ

[
r0 +

∞∑
t=1

γtrt|s0 = s

]
.

= Eπ [r0] + Eπ

[
γ ·

∞∑
t=1

γt−1rt|s0 = s

]
.

=
∑
a

π(a|s0 = s)
∑
s′,r

P (s′, r|s, a) [r] +
∑
a

π(a|s0 = s)
∑
s′,r

P (s′, r|s, a) [γEπ [Gt+1|S1 = s′]]

=
∑
a

π(a|s)
∑
s′,r

P (s′, r|s, a) [r + γVπ(s
′)]

= E a∼π(a|s)
s′,r∼P (s′,r|s,a)

[r + γVπ(s
′)]

We then see that the goal of RL is to find the optimal policy defined by π(a | s) = argmaxπ V
π(s).

Intuitively, V π(s) is telling us, on average, how ”good” we are when we start from state s and
follow policy π (here ”good” refers to the expected total return).

However, sometimes we might be interestd in the following question - instead of following policy
π from state s, what if we take a specific action a and then follow policy π. In other words, we
are trying to understand the value of taking a specific action a over the trajectory induced by
our policy π.

Definition 5. (State-action value function/action-value function/Q function.) The Q-value of
an action from a state or the state-action value function is defined to be

Qπ(s, a) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣S0 = s,A0 = a

]
.
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Intuitively, Qπ(s, a) refers to the expected sum of discounted rewards from taking action a from
state s and then following policy π from then on.

Lemma 2. We have the following alternative expression of the action-value function in terms
of the state-value function:

Qπ(s, a) = Es′,r∼P (s′,r|s,a) [r + γVπ(s
′)|S0 = s,A0 = a] .

Lemma 3. We can express the state-value function in terms of the action-value function as
follows:

Vπ(s) = Ea∼π(·|s) [Qπ(s, a)|s] .

1.3 Optimal Values and Policies

Definition 6. Optimal value function and optimal action-value function. The optimal value
function is the expected sum of discounted rewards when starting from a given state s and acting
optimally:

V ∗(s) = max
π

Eπ

[
H∑
t=0

γtrt|π, s0 = s

]
= max

π
Vπ(s).

Similarly, we define
Q∗(s, a) = max

π
Qπ(s, a).

In other words, Q∗(s, a) is the value of taking action a and then acting optimally. We have the
following relations

V∗(s) = max
a

Q∗(s, a)

and
Q∗(st, at) = E[rt + γV∗(st+1) | st, at].

Definition 7. Optimal policy. We say π ≥ π′ if and only if Vπ(s) ≥ Vπ′(s) for all s ∈ S. The
optimal policy π∗(s) is

π∗(s) = argmax
π

Vπ(s).

Note that π∗ need not be unique.

Lemma 4. For an infinite horizon problem i.e H =∞, the optimal policy is deterministic, sta-
tionary (i.e action distribution at a given state does not depend on the time) and not necessarily
unique.

Why do we care about value functions and action-value functions? This is because knowing
these would help us find the optimal policy fairly easily. Here are two ways you can do it:
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1. If we have a policy π and we know qπ(s, a), we can set the optimal policy to be

π∗(a | s) = 1{a = argmax
a′

qπ(s, a
′)}. (1)

In other words, the optimal policy could just take the optimal action in terms of qπ(s, a).
If we define this for every state, then we could get an optimal policy regardless of what π
we use in equation 1. Note that this would make a deterministic policy.

2. if policy πθ(a | s) is parametrized by parameters θ, we could update these parameters such
that πθ(a|s) for any good action a is maximized. In other words, if action a is such that
qπ(s, a) > Vπ(s), we maximize πθ(a | s) (increase probability of that action being taken).

1.4 State Distributions

We will often require some notion of the distribution of states visited or distribution of states
we might start from.

• P(s0 → s, k, πθ) is the probability of reaching state s from s0 in k time-steps under policy
π. We can calculate this as follows:

P(s0 → s, k, π) = P (s0)

k−2∏
t=0

 ∑
at,st+1

π(at | st)P (st+1|st, at)

∑
ak−1

π(ak−1 | sk−1)P (sk = s|sk−1, ak−1).

• pπ(s) =
∑∞
k=0 γ

kP(s0 → s, k, π) is the improper discounted state distribution. This is
called improper because this does not sum to 1.

• dπ(s) := (1 − γ)
∑∞
t=0 γ

tP(s0 → s, t, π) is the distribution over all states induced by π.
This is called the stationary distribution of Markov chain for π. The factor (1 − γ) is a
normalization constant and this distribution simply discounts states visited later in time.

1.5 Partially Observed MDPs

We frequently find ourselves working with partially observed MDPs (POMDPs). In this setting,
the agent has access to observations and not the states. These observations contain noisy
and/or incomplete information about the state. In these settings, the agent’s action depends on
a history of observations and not just the most recent observation. In other words, at ∼ π(· | ht)
where ht = (o0, a0, o1, a1, · · · , at−1, ot) (here ot′ is the observation at time step t′).

1.6 Oversimplified Overview

With this, we can now give an overview of various methods discussed in these notes:
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1. value-based methods: here we first try to estimate either the value function or the action-
value function of a policy by interacting with the environment and collecting rewards.
Once we have estimated the value of the policy, we update the policy and then we repeat.
While this works for relatively small state and action spaces, for larger ones, we would
requite value function approximation methods.

2. policy gradient methods: directly learn the optimal policy πθ parametrized by θ. We learn
this by updating θ so as to maximize the expected value. For these methods, we would
still require some estimation of the value of the policy or, at the very least, returns from
a policy.

3. model-based reinforcement learning: learn the transition model i.e. the transition dynam-
ics of the environment. Once we have this transition model, we can use it for planning or
improving a policy.

Generally, the algorithms we consider will be characterized as one of two things:

1. off-policy: these algorithms can collect experiences (experiences are lists like
st, at, rt, st+1, at+1, rt+1, . . . , st+H) using a policy πβ and use that to update a different
policy πθ.

2. on-policy: to update any policy π, we require experiences collected using policy π. In
other words, we cannot use experiences from other policies to update this policy.

While on-policy methods can give us more reliable signals to help us update our policy, off-policy
methods are more sample efficient.
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2 Policy Gradient Methods

In policy gradient methods, we directly parametrise the policy to be πθ(a|s). Our goal is then to
find πθ that maximizes expected returns. In the other algorithms we have seen so far, we tried
to estimate the value of a policy and then improved it, whereas, in the case of policy gradients,
we will directly aim to learn the optimal policy. We may still learn a value function in order
to help learn our parametrized optimal policy, but the value function will not be required for
our action selection (in the sense that, when selecting which action to take, we will not query
the value function - the value function is only used to help us update our policy πθ). Methods
that incorporate both a parametrized policy and a parametrized learned value function are often
called actor-critic methods. For policy-based methods, we have no value function, but only a
learned policy.

Policy gradient methods are useful for generating stochastic policies. A useful example of a
parametrized policy to keep in mind is a Gaussian policy (especially for continuous action spaces)
that is parametrized as a ∼ N (µθ(s),Σ) =: πθ(· | s) (we usually set Σ to be a diagonal matrix).
The policy can be parametrized in any way as long as it is differentiable with respect to its
parameters. More complex parameterizations can be used; the choice of policy parameterization
is sometimes a good way to inject prior knowledge about the desired form of the policy into
the reinforcement learning system. In any case, we generally want to encourage the policy
to explore and, to do so, we usually require that the policy never becomes deterministic i.e.
πθ(a | s) ∈ (0, 1),∀s, a.

Policy gradient methods are usually suitable for continuous action spaces and for high-dimensional
action spaces. However, a common phenomenon with policy gradient methods is that these poli-
cies tend to be hard to evaluate and can have a high variance.

Recall: we will require the following notions of distributions over states that we introduced
before in section 1.4:

• P(s0 → s, k, πθ) is the probability of reaching state s from s0 in k time-steps under policy
πθ.

• pπ(s) =
∑∞
k=0 γ

kP(s0 → s, k, πθ) is the improper discounted state distribution.

• dπθ (s) := (1 − γ)
∑∞
t=0 γ

tP(s0 → s, t, πθ) is the distribution over all states induced by πθ
be. The factor (1− γ) is a normalization constant and this distribution simply discounts
states visited later in time.

Overview:

• On-policy algorithms: REINFORCE, REINFORCE with baseline and actor-critic al-
gorithms. These algorithms require sampling trajectories with the parameters at each
iteration and then making updates to the policy.

• Off-policy algorithms: Off-policy actor-critic, SAC, etc. These algorithms collect trajec-
tories using a behavior policy which are then used to update potentially different policies.
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2.1 Deriving the Policy Gradient

In this note, we will cover episodic tasks. Let V (θ) = Vπθ
(s0), where s0 is the starting state

(which we consider to be fixed for simplicity) and the dependency on θ specifies that the value
depends on the policy πθ. Policy πθ can be any distribution. For example, we may use a
Gaussian policy and write πθ(a|s) = N (fθneural network(s),Σ).

Now, we want to maximize V (θ):

V (θ) = Vπθ
(s0)

=
∑
a

πθ(a|s0)Qπθ
(s0, a)

=
∑
τ

Pθ(τ)R(τ)

where Qπθ
(s0, a) is the expected reward attained under the policy πθ after taking action a from

state s0. Pθ(τ) is the probability of trajectory τ = (s0, a0, r0, s1, ...., sT−1, aT−1, rT−1, sT ) under
policy πθ and R(τ) is the total reward from trajectory τ .

Lemma 5. ∇θV (θ) =
∑
τ R(τ)Pθ(τ)∇θ log(Pθ(τ))

Proof.

∇θV (θ) = ∇θ
∑
τ

Pθ(τ)R(τ)

=
∑
τ

R(τ)∇θPθ(τ)

=
∑
τ

R(τ)
Pθ(τ)

Pθ(τ)
∇θPθ(τ)

=
∑
τ

R(τ)
Pθ(τ)

Pθ(τ)
∇θPθ(τ)

=
∑
τ

R(τ)Pθ(τ)∇θ log(Pθ(τ))

Now, using Lemma 5, we see that

∇θV (θ) = EPθ
[R(τ)∇θ log(Pθ(τ))].

We can also get an approximation for our update rule:

∇θV (θ) ≈ 1

m

m∑
i=1

R(τ (i))∇θ log(Pθ(τ (i))).
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However, we still don’t know how to compute the gradient of the log-probability. For that, we
need the following lemma:

Lemma 6. ∇θ log(Pθ(τ)) =
∑T−1
t=0 ∇θ log πθ(at|st)

Proof.

∇θ log (Pθ(τ) = ∇θ log

(
ρ(s0)

T−1∏
t=0

πθ(at|st)P (st+1|st, at)

)

= ∇θ log (ρ(s0)) +
T−1∑
t=0

log πθ(at|st) + logP (st+1|st, at)

=

T−1∑
t=0

∇θ log(πθ(at|st))

With Lemma 6, we get the following tractable update rule:

∇θV (θ) = Eτ∼Pθ(τ)

[(
T∑
t=0

∇θ log πθ(at|st)

)(
T∑
t=0

r(st, at)

)]
.

We can easily compute this as long as we can take the derivative of log πθ(a | s).

2.2 Policy Gradient Theorem

We generalize this approach through the policy gradient theorem [1]. First, we consider an
episodic task.

Theorem 7. (Policy Gradient Theorem (episodic case)) Suppose, our task is episodic. Fur-
thermore, suppose, our start state is s0 for all trajectories. Then,

∇θV (θ) =
∑
s

pπθ (s)
∑
a

Qπθ
(s, a)∇θπθ(a|s)

= Es∼pπθ (s),a∼πθ(a|s) [Qπθ
(s, a)∇θ log πθ(a|s)]
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Proof.

∇θV (θ) = ∇θ

(∑
a

πθ(a|s)qπθ
(s, a)

)
=
∑
a

(∇θπθ(a|s)) qπθ
(s, a) + πθ(a|s)∇θqπθ

(a, s)

=
∑
a

(∇θπθ(a|s)) qπθ
(s, a) + πθ(a|s)∇θ

∑
s′,r

p(s′, r|s, a) (r + γVπθ
(s′))


=
∑
a

(∇θπθ(a|s)) qπθ
(s, a) + πθ(a|s)

∑
s′,r

p(s′, r|s, a)γ · ∇θ (Vπθ
(s′))


=
∑
a

∇θπθ(a|s)qπθ
(s, a)+

πθ(a|s)
∑
s′

p(s′|s, a) · γ ·

(∑
a′

(∇θπθ(a′|s′)qπθ
(s′, a′)) + πθ(a

′|s′)
∑
s′′

P (s′′|s′, a′)γ · ∇θVπθ
(s′′)

)

=
∑
x∈S

∞∑
k=0

P(s0 −→ x, k, πθ)γ
k
∑
a

∇θπθ(a|x)qπθ
(x, a)

=
∑
s

pπθ (s)
∑
a

∇θπθ(a|s)qπθ
(s, a)

We derived the policy gradient theorem for the episodic setting. Now we suppose our task is no
longer episodic. Again, let us assume that the initial state is fixed s0. In this case, we define

V (θ) = lim
h−→∞

1

h

h∑
t=1

Eπθ
[Rt] = lim

t−→∞
Es,a∼πθ

[Rt] =
∑
s

µ(s)
∑
a

πθ(a|s)
∑
s′,r

P (s′, r|s, a)r.

where µ(s) := limt−→∞ P(st = s|a0:t ∼ πθ). We call µ(s) the steady-state distribution i.e. we
say that as time progresses, the probability of being in a state s converges. We assume that
this distribution is independent of the initial state, which is called an ergodicity assumption.
In particular, if we execute actions by sampling from the policy πθ, then we remain in this
distribution:

∑
s

µ(s)
∑
a

πθ(a | s)p(s′ | s, a) = µ(s′)

for all s′ ∈ S.
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In the continuing case, we define

Gt := Rt+1 − V (θ) +Rt+2 − V (θ) + · · ·

and using this, we define, Vπθ
(s) := Eπθ

[Gt|st = s], qπθ
(s, a) = Eπθ

[Gt|st = s, at = a].

We prove the following theorem, which is analogous to the episodic setting:

Theorem 8. (Policy Gradient Theorem (continuous case)) Suppose, our task is continuous.
Furthermore, suppose our start state is s0 for all trajectories. Then,

∇θV (θ) ∝
∑
s

µ(s)
∑
a

qπθ
(s, a)∇θπθ(a|s).

Proof.

∇θVπθ
(s) = ∇

[∑
a

πθ(a|s)qπθ
(s, a)

]
=
∑
a

[∇θπθ(a|s)qπθ
(s, a) + πθ(a|s)∇θqπθ

(s, a)]

=
∑
a

∇θπθ(a|s)qπθ
(s, a) + πθ(a|s)∇θ

∑
s′,r

P (s′, r|s, a)(r − V (θ) + Vπθ
(s′))


=
∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)[−∇θV (θ) +
∑
s′

P (s′|s, a)∇θVπθ
(s′)]

]

∇θV (θ) =
∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)
∑
s′

P (s′|s, a)∇θVπθ
(s′)

]
−∇θVπθ

(s)

Now, the left hand side is independent of s, so we can do a weighted sum over s (weighted by
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µ(s):

∑
s

µ(s)∇θV (θ) =
∑
s

µ(s)

(∑
a

[
∇θπθ(a|s)qπθ

(s, a) + πθ(a|s)
∑
s′

P (s′|s, a)∇θVπθ
(s′)

]
−∇θVπθ

(s)

)
∇θV (θ) =

∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)+∑

s

µ(s)
∑
a

πθ(a|s)
∑
s′

P (s′|s, a)∇θVπθ
(s′)−

∑
s

µ(s)∇θVπθ
(s)

=
∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a)+∑

s′

∑
s

µ(s)
∑
a

πθ(a|s)P (s′|s, a)∇θVπθ
(s′)−

∑
s

µ(s)∇θVπθ
(s)

=
∑
s

µ(s)
∑
a

∇θπθ(a|s)qπθ
(s, a) +

∑
s′

µ(s′)∇θVπθ
(s′)−

∑
s

µ(s)∇θVπθ
(s)

=
∑
s

µ(s)
∑
a

qπθ
(s, a)∇θπθ(a|s)

where in the second last line we used the fact that µ(s′) =
∑
s µ(s)

∑
a πθ(a|s)P (s′|s, a).

This is a very interesting and powerful result - the fact that the same theory holds for both
episodic and non-episodic tasks after the simple, understandable redefinition of Gt. In fact, the
new way of seeing Gt is similar to the introduction of baselines in methods like REINFORCE.

2.3 REINFORCE

Using our derivation, we have our first policy gradient algorithm. So far, we have:

∇θV (θ) = Eτ∼Pθ(τ)

[(
T∑
t=0

∇θ log πθ(at|st)

)(
T∑
t′=0

r(st′ , at′)

)]
.

REINFORCE is an on-policy algorithm that approximates this by sampling multiple trajectories
rolled out by policy πθ and then letting:

∇θV (θ) ≈ 1

m

m∑
i=1

(
T∑
t=0

∇θ log πθ(ai,t|si,t)

)(
T∑
t′=0

r(si,t′ , ai,t′)

)

Intuitive interpretation: One way to interpret this update rule is to note that we are max-
imizing the log-likelihood of each trajectory sampled - except we are weighing them by their

15



returns. In other words, if a trajectory yields higher returns, we are increasing the log-likelihood
of that with a larger weight than one that yields lower returns.

Problems with REINFORCE:

1. Since this is an on-policy method, we require sampling multiple trajectories for each update
to the policy.

2. The algorithm has high variance since the trajectory samples are often quite noisy (es-

pecially in most real-world environments). More precisely,
∑T
t′=1 r(si,t′ , ai,t′) has high

variance. As such, REINFORCE is a quite slow algorithm in most cases.

We will next introduce a couple of algorithms that are aimed towards solving these issues.

2.4 REINFORCE using causality

The update rule we derived so far is

∇θV (θ) ≈ 1

m

m∑
i=1

(
T∑
t=0

∇θ log πθ(ai,t|si,t)

)(
T∑
t′=0

r(si,t′ , ai,t′)

)
.

Recall the intuition we provided in the previous section: we are maximizing log probability of
each action weighted by the ”goodness” of the action i.e. the returns achieved by executing
the action. Now, notice that the action at time t cannot affect the rewards at time t′ < t. In
other words, when we maximize the log-likelihood of taking a particular action ai,t from a state
si,t, should we really weigh it by the reward attained from the entire trajectory? Intuitively, it
makes more sense to weigh it by the rewards attained from that time t onward in the trajectory
i since only the rewards attained after executing ai,t gives us a signal for how good the action
is. With this in mind, we have the following modification:

∇θV (θ) ≈ 1

m

m∑
i=1

(
T∑
t=0

∇θ log πθ(ai,t|si,t)

)(
T∑
t′=0

r(si,t′ , ai,t′)

)
.

The term
∑T
t′=t r(si,t′ , ai,t′) is called reward-to-go. In other words, we are using the ”reward to

go” from time t.
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Algorithm: REINFORCE (with causality)

1: Initialize policy parameters θ
2: for iteration = 1, 2, . . . do
3: Collect a set of trajectories {τ i} by running the policy πθ(at|st)
4: for each trajectory τ i do
5: for each timestep t in τ i do
6: Compute return: Git =

∑T
t′=t r(s

i
t′ , a

i
t′)

7: end for
8: end for
9: Update the policy parameters:

∇θV (θ) ≈
∑
i

∑
t∇θ log πθ(ait|sit)Git

θ ← θ + α∇θV (θ)
10: end for

Intuitive interpretation: we are updating the policy parameters by taking a step in the
direction of ∇θV (θ) ≈

∑
i

∑
t(∇θ log πθ)Git. Focus on the term

∑
i

∑
t(∇θ log πθ). A step in

this direction is essentially maximizing the probability of A = a | s under πθ, which is what
maximum likelihood estimation does! Since this is scaled by Git, it takes a step in a direction
that is closed aligned with high Git actions i.e., actions that we expect to give higher returns.

Here is a more formal derivation of this causality idea:

So far, in the derivation of the policy gradient, we assumed we wanted to maximize Eπθ
[R(τ)].

What if we instead choose to maximize the reward at one time-step, rt, only? Following the
same steps of derivation, we would arrive at

∇θEπθ
[rt] = Eπθ

[
t∑

t′=0

∇θ log πθ(at′ | st′)rt

]
.

Now, we can take the sum of rewards over time t′ = 0, · · · , T to get

∇θEπθ
[rt] = Eπθ

[
T∑
t=0

rt

t∑
t′=0

∇θ log πθ(at′ | st′)

]

= Eπθ

[
T∑
t=0

∇θ log πθ(at | st)
T∑
t′=t

rt′

]
.
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2.5 REINFORCE with baseline

To further reduce variance, we introduce a baseline:

∇θV (θ) ≈ 1

m

m∑
i=1

(
T∑
t=0

∇θ log πθ(ai,t|si,t)

)(
T∑
t′=0

r(si,t′ , ai,t′)− b(si,t′)

)
.

where b is any arbitrary function as long as it does not depend on at.

Intuitive explanation: in REINFORCE, we sample trajectories and maximize the log prob-
ability of actions based on how good they were. Subtracting an appropriate baseline (we will
discuss what are appropriate baselines soon) is equivalent to asking ”Are the returns from this
action better than expected?” We choose a baseline that gives us a sense of Vπθ

(si,t′) because
that is the expected returns from the state.

What baseline should we choose? We usually choose baselines that are either constant or
depends only on si,t′ but not on ai,a′ .

1. We usually select b(s) = Eτ∼πθ
[r(τ) | s0 = s].

2. We could also use a learned state-action value function parametrized by ϕ,

vϕ(st) =: b(st).

Note that either choice gives is an unbiased modification of the original update rule derived
from the policy gradient theorem:

Proposition 9. Subtracting the baseline b (that does not depend on action) is unbiased in
expectation i.e.,

∇θV (θ) =
∑
s

pπθ (s)
∑
a

(Qπθ
(s, a)− b(s))∇θπθ(a|s)

Proof. The proof follows from the fact that b(s)
∑
a∇θπθ(a | s) = b(s)∇θ

∑
a πθ(a | s) =

b(s)∇θ(1) = 0.

We can actually find the baseline that reduces the variance the most in a principled manner:

Proposition 10. b = E[g(τ)2r(τ)]
E[g(τ)2] minimizes the variance:

Var := Eτ∼Pθ(τ)

[
(∇θ logPθ(τ)(r(τ)− b))2

]
− Eτ∼Pθ(τ) [∇θ logPθ(τ)(r(τ)− b)]

2
.

Here g(τ) is the gradient ∇θ logPθ(τ).

Proof. Take the derivative with respect to the baseline b and, after a little bit of algebra, you
get the desired expression.
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In other words, the optimal baseline is the expected reward but weighted by the magnitude of
our gradients. In practice, we end up just using the expected reward as the baseline.

Algorithm: REINFORCE with baseline

1: Initialize policy parameters θ
2: for iteration = 1, 2, . . . do
3: Collect a set of trajectories {τ i}Ni=1 by running the policy πθ(at|st)
4: for each trajectory τ i do
5: for each timestep t in τ i do
6: Compute return: Git =

∑T
t′=t r(s

i
t′ , a

i
t′)

7: end for
8: end for
9: Compute b = 1

N

∑N
i=1 r(τ

i)
10: Update the policy parameters:

∇θV (θ) ≈
∑
i

∑
t∇θ log πθ(ait|sit)(Git − b)

θ ← θ + α∇θV (θ)
11: end for

REINFORCE with Baseline using learned value-function baseline

Input: a differentiable policy parameterization π(a | s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)
Algorithm parameters: step sizes αθ > 0, αw > 0
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd (e.g., to 0)

Loop forever (for each episode):

• Generate an episode S0, A0, R1, . . . , ST−1, AT−1, RT , following π(· | ·,θ)

• Loop for each step of the episode t = 0, 1, . . . , T − 1:

– G←
∑T
k=t+1 γ

k−t−1Rk (Gt)

– δ ← G− v̂(St,w)

– w← w + αwδ∇v̂(St,w)

– θ ← θ + αθγtδ∇ lnπ(At | St,θ)

2.6 On-Policy Actor-Critic Methods

Actor-Critic methods replace the reward to go
∑T
t′=t r(si,t′ , ai,t′) with r(si,t, ai,t)+γV

πθ

ϕ (si,t+1).

As for the baseline, we use Vθ(si,t). Then, we can replace
∑T
t′=t r(si,t′ , ai,t′) in REINFORCE

with the advantage function Aπθ (si,t′ , ai,t′) ≈ r(si,t, ai,t) + γV πθ

ϕ (si,t+1)− V πθ

ϕ (si,t). The better
the estimate of this advantage, the lower the variance.
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Actor-critic methods use a learned value function V πθ

ϕ (st). This is trained using supervised
regression. Suppose that our training set (using the rollouts by policy πθ) is of the form

{(si,t,
∑T
t′=t r(si,t′ , ai,t′))}. Then, we train via minimizing

1

2

∑
i

∑
t

∣∣∣∣∣
∣∣∣∣∣V πθ

ϕ (si,t)−

(
T∑
t′=t

r(si,t′ , ai,t′)

)∣∣∣∣∣
∣∣∣∣∣
2

.

Alternatively, we can also train this by using a boostrapped estimate of the target:

1

2

∑
i

∑
t

∣∣∣∣∣∣V πθ

ϕ (si,t)−
(
r(si,t, ai,t) + V πθ

ϕ (si,t+1)
)∣∣∣∣∣∣2 .

One-step Actor–Critic (episodic), for estimating πθ ≈ π∗

Input: a differentiable policy parameterization π(a | s,θ)
Input: a differentiable state-value function parameterization v̂(s,w)
Parameters: step sizes αθ > 0, αw > 0
Initialize policy parameter θ ∈ Rd′ and state-value weights w ∈ Rd (e.g., to 0)

Loop forever (for each episode):

• Initialize S (first state of episode)

• I ← 1

• Loop while S is not terminal (for each time step):

– A ∼ π(· | S,θ)
– Take action A, observe S′, R

– δ ← R+ γv̂(S′,w)− v̂(S,w) (if S′ is terminal, then v̂(S′,w)
.
= 0)

– w← w + αwδ∇v̂(S,w)

– θ ← θ + αθIδ∇ lnπ(A | S,θ)
– I ← γI

– S ← S′

2.7 Making inroads to off-policy policy gradient

Suppose, we collected trajectories using policy πθ and we know the returns from these trajecto-
ries. Can we use them to make updates to a different policy πθ′?

Given policy πθ′ , we want to maximize V (θ′) = Eτ∼pθ′ (τ) [r(τ)]. Using importance-sampling,
we can write:
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V (θ) = Eτ∼pθ
[
pθ′(τ)

pθ(τ)
r(τ)

]
∇θV (θ) = Eτ∼pθ

[
pθ′(τ)

pθ(τ)
∇θ′ log(pθ′(τ))r(τ)

]

Then, using the full expression for the probability of any trajectory, we get

∇θV (θ) = Eτ∼pθ

[
T∏
t=1

πθ′(at | st)
πθ(at | st)

(
T∑
t=1

∇θ′ log πθ′(at | st)

)
r(τ)

]

= Eτ∼pθ

[
T∏
t=1

πθ′(at | st)
πθ(at | st)

(
T∑
t=1

∇θ′ log πθ′(at | st)

)(
T∑
t=1

r(st, at)

)]

Rewrite this:

∇θV (θ)

= Eτ∼pθ

( T∑
t=1

∇θ′ log πθ′(at | st)

)(
t∏

t′=1

πθ′(at′ | st′)
πθ(at′ | st′)

) T∑
t′=t

r(st′ , at′)

 t′∏
t′′=t

πθ′(at′′ | st′′)
πθ(at′′ | st′′)



And then we get, using causality:

∇θV (θ) = Eτ∼pθ

[(
T∑
t=1

∇θ′ log πθ′(at | st)

)(
t∏

t′=1

πθ′(at′ | st′)
πθ(at′ | st′)

)(
T∑
t′=t

r(st′ , at′)

)]

2.8 Off-Policy Actor-Critic (OffPAC)

This section is not really new - we just use importance sampling. The derivation will assume
continuous state and action spaces. We want to estimate the policy gradient off-policy from
trajectories sampled from a distinct behaviour policy β(a|s) ̸= πθ(a|s). In this setting, the
performance objective is the value function of the target policy, πθ, averaged over the state
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distribution of the behaviour policy β(a|s):

Jβ(πθ) =

∫
S
pβ(s)V πθ (s) =

∫
S

∫
A
pβ(s)πθ(a|s)Qπθ (s, a)dads.

The policy gradient becomes (after approximating by dropping ∇θQπθ (s, a)):

∇θJβ(πθ) = Es∼pβ ,a∼β
[
πθ(a|s)
β(a|s)

∇θ log πθ(a|s)Qπθ (s, a)

]
.

OffPAC (Off-Policy Actor Critic) algorithm uses the behavior policy β(a|s) to generate trajec-
tories. A critic estimates V ϕ(s) ≈ V πθ (s) off-policy by gradient temporal-difference learning.
Instead of the unknown Qπθ (s, a), the temporal-difference error δt = rt+1 + γV ϕ(st+1)−V ϕ(st)
is used.

2.9 Performance Difference Lemma

We want to prove a few results that are building blocks for trust regional policy optimisation.

Firstly, note that the probability of sampling any particular trajectory τ = (s0, a0, r0, s1, a1, ....)
is Pθ(τ) =

∏∞
i=0 πθ(ai|si)P (si+1|si, ai). The probability of sampling a particular trajectory τ

such that st = s is Pθ(st = s) =
∑
a0

∑
s1
...
∑
st−1

∑
at−1

(∏T−2
i=1 πθ(ai|si)P (si+1|si, ai)

)
πθ(at−1 |

st−1)P (st = s | st−1, at−1).

Let the distribution over all states induced by πθ be:

dπθ (s) := (1− γ)
∞∑
t=0

γtPθ(st = s).

The factor (1 − γ) is a normalization constant and this distribution simply discounts states
visited later in time.

Lemma 11. Eτ∼Pθ
[
∑∞
t=0 γ

tf(st, at)] =
1

1−γEs∼dπθ

[
Ea∼πθ(·|s) [f(s, a)]

]
Proof.

Eτ∼Pθ

[ ∞∑
t=0

γtf(st, at)

]

=
∑
τ

Pθ(τ)

∞∑
t=0

γtf(st, at)

=
∑
τ

∞∏
i=0

πθ(ai|si)P (si+1|si, ai)
∞∑
t=0

γtf(st, at)
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=
∑
a0

∑
s1

∑
a1

· · ·
∞∏
i=0

π(ai|si)P (si+1|si, ai)
∞∑
t=0

γtf(st, at)

=
∑
a0

πθ(a0|s0)f(s0, a0) + γ
∑
a0

∑
s1

∑
a1

πθ(a0|s0)P (s1|s0, a0)πθ(a1|s1)f(s1, a1) + · · ·

=

∞∑
t=0

γt
∑
a0

∑
s1

∑
a1

· · ·
∑
st

∑
at

∑
st+1

t∏
i=0

πθ(ai|si)P (si+1|si, ai)f(st, at)

=

∞∑
t=0

γt
∑
st+1

(· · · ) f(st, at)

=

∞∑
t=0

γt (· · · ) f(st, at)

=

∞∑
t=0

γt
∑
st

∑
at

∑
a0

· · ·
∑
st−1

∑
at−1

t−1∏
i=0

πθ(ai|si)P (si+1|si, ai)

πθ(at|st)f(st, at)

=

∞∑
t=0

γt
∑
st

∑
at

Pθ(st)πθ(at|st)f(st, at)

=
1

1− γ
(1− γ)

∞∑
t=0

γt
∑
st

Pθ(st)
∑
at

πθ(at|st)f(st, at)

=
1

1− γ
(1− γ)

∞∑
t=0

γt
∑
st

Pθ(st)Ea∼πθ
[f(st, a)]

=
1

1− γ
Es∼dπθ [Ea∼πθ

[f(st, a)]]

Theorem 12. (Performance Difference Lemma)

Vπ(s0)− Vπ′(s0) =
1

1− γ
Es∼dπ

[
Ea∼π(s)

[
Aπ

′
(s, a)

]]
where the advantage function is Aπ(s, a) := qπ(s, a)− V π(s).

Proof.

Vπ(s0)− Vπ′(s0)

= Eτ∼Pπ

[ ∞∑
t=0

γtR(st, at)

]
+ Eτ∼Pπ

[ ∞∑
t=0

γt+1Vπ′(st+1)

]
− Eτ∼Pπ

[ ∞∑
t=0

γt+1Vπ′(st+1)

]
− Vπ′(s0)

= Eτ∼Pπ

[ ∞∑
t=0

γt(R(st, at) + γVπ′(st+1))−
∞∑
t=0

γt+1Vπ′(st+1)− Vπ′(s0)

]
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Now, we expand the first term:

Eτ∼Pπ

[ ∞∑
t=0

γt (R(st, at) + γVπ′(st+1))

]

=

∞∑
t=0

γtEτ∼Pπ

[
R(st, at) + γV π

′
(st+1|st, at)

]
=

∞∑
t=0

γtEst∼Pπ

[
Eat∼Pπ

[
Est+1∼Pπ

[
R(s, a) + γV π

′
(st+1)|s = st, a = at

]
|a = at

]
|s = st

]

=

∞∑
t=0

γtEst,at∼Pπ

R(s, a) + γ
∑
st+1

P (st+1|st, at)V π
′
(st+1)|s = st, a = at


=

∞∑
t=0

γtEτ∼Pπ

[
Qπ

′
(s, a)|s = st, a = at

]
= Eτ∼Pπ

[ ∞∑
t=0

γtQπ
′
(st, at)

]

Therefore, we get

V π(s0)− V π
′
(s0) = Eτ∼Pπ

[ ∞∑
t=0

γt
(
Qπ

′
(st, at)− V π

′
(st)

)]

= Eτ∼Pπ

[ ∞∑
t=0

γtAπ
′
(st, at)

]

=
1

1− γ
Es∼dπ

[
Ea∼π

[
Aπ

′
(s, a)

]]

Sometimes, as in [2], this lemma has the following equivalent expression:

Proposition 13. (Performance Difference Lemma (2)) Given two policies π and π′,

V (π′)− V (π) = Eτ∼π′

[ ∞∑
t=0

γtAπ(st, at)

]
.

Proof. We write:

Aπ(s, a) = Es′∈P (s′|s,a) [r(s, a) + γVπ(s
′)− Vπ(s)] .
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Then,

Eπ′

[ ∞∑
t=0

γtAπ(st, at)

]
= Eπ′

[ ∞∑
t=0

γt (r(st, at) + γVπ(st+1)− Vπ(st))

]

= Eπ′

[
−Vπ(s0) +

∞∑
t=0

γt (r(st, at))

]

= −Es0∼ρ0 [Vπ(s0)] + Eπ′ [

∞∑
t=0

γtrt]

= −V (π) + V (π′).

2.10 Covariant/natural policy gradient

So far, our update rules were aimed towards computing

θ ← θ + α∇θV (θ)

to update the policy πθ(a | s). However, controlling the learning rate to maximize V (θ) is non-
trivial. Some parameters of your policy ultimately end up affecting V (θ) more than others and
choosing one constant α that controls the learning rate for all the parameters is difficult. We
would want to have higher learning rates for parameters that do not change the policy very
much and smaller learning rates for those that do.

Now, notice that using a first-order Taylor expansion, we can write:

argmax
θ′

V (θ′) ≈ argmax
θ′

V (θ) + (θ′ − θ)T∇θV (θ).

So, we aim to solve argmaxθ′(θ
′ − θ)T∇θV (θ) such that ||θ′ − θ|| ≤ ϵ (so that the Taylor

approximation is valid). We can reframe this problem in the policy space: we aim to solve
argmaxθ′(θ

′ − θ)T∇θV (θ) such that D(πθ′ || πθ) ≤ ϵ where D is a divergence-measure [3].

We can choose D to be the KL-divergence. In this case, we can approximate (using the second-
order Taylor approximation) DKL(πθ′ || πθ) ≈ (θ′ − θ)TF (θ′ − θ) where F is the Fisher infor-

mation matrix, i.e. F = Eπθ
[(∇θ log πθ(a | s)) (∇θ log πθ(a | s))T ]. Then, the problem becomes:

argmaxθ′(θ
′ − θ)T∇θV (θ) such that ||θ′ − θ||2F ≤ ϵ. Then, the update rule becomes

θ ← θ + αF−1∇θV (θ)

2.11 Trust Region Policy Optimization (TRPO)

In this section, we discuss the building blocks of TRPO.
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Let V (π) = Eπ[
∑∞
t=0 γ

trt]. Recall: Qπ(st, at) = Eπ[
∑∞
l=0 γ

lrt+l | st, at], Vπ(st) = Eπ[
∑∞
l=0 γ

lrt+l |
st] and Aπ(s, a) = Qπ(s, a)− Vπ(s) where at ∼ π(at | st).

Recall the improper discounted state distribution pπ(s) =
∑∞
k=0 γ

kP(s0 → s, k, π). Using this,
we can write the performance difference lemma as:

V (π′)− V (π) =

∞∑
t=0

∑
s

P (st = s | π′)
∑
a

π′(a | s)γtAπ(s, a)

=
∑
s

∞∑
t=0

γtP (st = s | π′)
∑
a

π′(a | s)Aπ(s, a)

=
∑
s

pπ
′
(s)
∑
a

π′(a | s)Aπ(s, a)

Note: V (π′)− V (π) ≥ 0 if, at every state s, we have that
∑
a π

′(a | s)Aπ(s, a) ≥ 0.

Now, the first building block of TRPO is the local approximation of this as

Lπ(π
′) = V (π) +

∑
s

pπ(s)
∑
a

π′(a | s)Aπ(s, a)

where we have replaced pπ
′
with pπ

′
. Note that when our policy πθ(a | s) is differentiable, then,

for the parameters θ0, we have that Lπθ0
(πθ0) = V (πθ0) and ∇θLπθ0

(πθ)|θ=θ0 = ∇θV (πθ)|θ=θ0 .
Therefore, if the update πθ0 → π′ is small enough such that Lπθ0

(πθ0) improves, then we see an
improvement in the value V as well. However, controlling the learning rate that ensures this is
difficult. TRPO aims to solve this issue.

The guiding principal comes from the following theorem [2]:

Theorem 14. Let α = Dmax
TV (πold, πnew) = maxsDTV(πold(· | s)||πnew(· | s)). Then,

V (πnew) ≥ Lπold
(πnew)−

4ϵγ

(1− γ)2
α2

where ϵ = maxs,a |Aπ(s, a)|.

The main building blocks are the following two definitions and lemma:

Definition 8. (α-coupled policy pair). We call (π, π′) an α-coupled policy pair if the joint
distribution (a, a′) | s is such that P(a ̸= a′ | s) ≤ α for all s.

We also define
Ā(s) = Ea∼π′(·|s) [Aπ(s, a)] .

Then, we have the following lemma:
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Lemma 15. Let (π, π′) be an α-coupled policy pair. Then, for all states s,

|Ā(s)| ≤ 2αmax
s,a
|Aπ(s, a)|.

Proof.

Ā(s) = Ea′∼π′ [Aπ(s, a
′)]

= E(a,a′)∼(π,π′)[Aπ(s, a
′)−Aπ(s, a)]

as Ea∼π[Aπ(s, a)] = 0. Then, continuing:

Ā(s) = E(a,a′)∼(π,π′)[Aπ(s, a
′)−Aπ(s, a)]

=
∑
a′

π′(a′ | s)
∑
a̸=a′

π(a | s)(Aπ(s, a′)−Aπ(s, a))

|Ā(s)| = |
∑
a′

π′(a′ | s)
∑
a̸=a′

π(a | s)(Aπ(s, a′)−Aπ(s, a))|

≤ |
∑
a′

π′(a′ | s)
∑
a̸=a′

π(a | s)(Aπ(s, a′))|+ |
∑
a′

π′(a′ | s)
∑
a ̸=a′

π(a | s)(Aπ(s, a))|

≤ |
∑
a′

π′(a′ | s)
∑
a̸=a′

π(a | s)(max
s,a

Aπ(s, a))|+ |
∑
a′

π′(a′ | s)
∑
a̸=a′

π(a | s)(max
s,a

Aπ(s, a))|

= |max
s,a

Aπ(s, a)|2
∑
a′

π′(a′ | s)
∑
a̸=a′

π(a | s)|

= 2α|max
s,a

Aπ(s, a)|

≤ 2αmax
s,a
|Aπ(s, a)|

Lemma 16. Let (π, π′) be an α-coupled policy pair. Then,

|Est∼π′
[
Ā(st)

]
− Est∼π

[
Ā(st)

]
| ≤ 2αmax

s
|Ā(s)| ≤ 4α(1− (1− α)t)max

s
|Aπ(s, a)|.

Proof. Let nt be the number of time steps such that ai ̸= a′i for i < t and ai ∼ π, a′i ∼ π′. This
denotes the number of times π and π′ take different actions before time step t. Then,

Est∼π′
[
Ā(st)

]
= P (nt = 0)Est∼π′|nt=0

[
Ā(st)

]
+ P (nt > 0)Est∼π′|nt>0

[
Ā(st)

]
.

Similarly,

Est∼π
[
Ā(st)

]
= P (nt = 0)Est∼π|nt=0

[
Ā(st)

]
+ P (nt > 0)Est∼π|nt>0

[
Ā(st)

]
.
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Now,

Est∼π′|nt=0

[
Ā(st)

]
= Est∼π|nt=0

[
Ā(st)

]
since nt = 0 =⇒ π and π′ executed the same actions on all time steps less than t. Then,

Est∼π′
[
Ā(st)

]
− Est∼π

[
Ā(st)

]
= P (nt > 0)

(
Est∼π′|nt>0

[
Ā(st)

]
− Est∼π|nt>0

[
Ā(st)

])
.

Now, since π and π′ are α-coupled, then, P(a = a′ | s) ≥ 1− α, so P (nt = 0) ≥ (1− α)t and

P (nt > 0) ≤ 1− (1− α)t.

On the other hand, using triangle inequality,

|Est∼π′|nt>0

[
Ā(st)

]
− Est∼π|nt>0

[
Ā(st)

]
| (2)

≤ |Est∼π′|nt>0

[
Ā(st)

]
|+ |Est∼π|nt>0

[
Ā(st)

]
| (3)

≤ 2max
s
|Ā(s)| (4)

≤ 4αmax
s,a
|Aπ(s, a)| (5)

(6)

Then,

|Est∼π′
[
Ā(st)

]
− Est∼π

[
Ā(st)

]
|

= |P (nt > 0)
(
Est∼π′|nt>0

[
Ā(st)

]
− Est∼π|nt>0

[
Ā(st)

])
|

≤ 4α(1− (1− α)t)max
s,a
|Aπ(s, a)|.

Now we prove theorem 14:

Proof. Denote π = πold and π′ = πnew. Let ϵ = maxs,a |Aπ(s, a)|. Then, using performance
difference lemma and the definition of Ā(s):

V (π′)− V (π) = Eτ∼π′

[ ∞∑
t=0

γtAπ(st, at)

]

= Eτ∼π′

[ ∞∑
t=0

γtĀ(st)

]
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On the other hand,

Lπ(π
′) = V (π) + Es∼pπ,a∼π′ [Aπ(s, a)]

= V (π) + Eτ∼π

[ ∞∑
t=0

γtĀ(st)

]
.

Combining:

|V (π′)− Lπ(π′)| ≤
∞∑
t=0

γt
∣∣Eτ∼π′ [Ā(st)]− Eτ∼π[Ā(st)]

∣∣
∞∑
t=0

γt4ϵα(1− (1− α)t)

= 4ϵα

(
1

1− γ
− 1

1− γ(1− α)

)
=

4α2γϵ

(1− γ)(1− γ(1− α))

=
4α2γϵ

(1− γ)(1− γ(1− α))

≤ 4α2γϵ

(1− γ)2
.

Now, if we have two policies π and π′ such that maxsDTV(π(· | s)||π′(· | s)) ≤ α, then we
can define an α-coupled policy with the appropriate marginals by Theorem 23. Therefore, take

α = maxsDTV(π(· | s)||π′(· | s)), plug this into 4α2γϵ
(1−γ)2 to conclude.

From theorem 14, by noting that DTV(p||q)2 ≤ DKL(p||q), we get that

V (π′) ≥ Lπ(π′)− 4ϵγ

(1− γ)2
Dmax

KL (π, π′).

Using this, we can find a preliminary algorithm:

Algorithm: Policy iteration guaranteeing non-decreasing expected return V

1: Initialize policy π0
2: for i = 0, 1, 2, . . . until convergence do
3: Compute all advantage values Aπi(s, a)
4: Solve the constrained optimization problem:

πi+1 = argmaxπ [Lπi
(π)− CDmax

KL (πi, π)]
where C = 4ϵγ

(1−γ)2

and Lπi
(π) = V (πi) +

∑
s p

πi(s)
∑
a π(a|s)Aπi

(s, a)
5: end for
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This algorithm has guaranteed monotonic improvement. We can now use it to derive TRPO.
Let V (θ) := V (πθ), Lθ(θ

′) := Lπθ
(πθ′), and DKL(θ ∥ θ′) := DKL(πθ ∥πθ′). We saw that:

V (θ) ≥ Lθold(θ)− CDmax
KL (θold, θ)

with equality at θ = θold. Thus, we can improve V (θ) by solving the following optimization
problem:

max
θ

Lθold(θ)− CDmax
KL (θold, θ)

However, choosing the step size here is tricky - if we use C = 4ϵγ
(1−γ)2 , then the step sizes become

small. Instead, we solve the following with a trust region constraint:

max
θ

Lθold(θ) (7)

subject to Dmax
KL (θold, θ) ≤ δ (8)

In practice, we use the average KL divergence: D̄pθold

KL (θold, θ) = Es∼pθold [DKL(πθold(· | s)||πθ(· |
s))]

Lastly, we show how to estimate the objective and constraint functions using Monte Carlo simula-
tion. We replace the objective

∑
s p

θold(s)
∑
a πθ(a | s)Aθold(s, a) with

1
1−γEs∼θold,a∼πθ(·|s)[Aθold(s, a)]].

Lastly, we use importance sampling. Altogether, we have:

max
θ

Es∼pθold , a∼πθold

[
πθ(a | s)
πθold(a | s)

Aθold(s, a)

]
(9)

subject to Es∼pθold [DKL (πθold(· | s) ∥πθ(· | s))] ≤ δ (10)

The alternative version is the optimize the following:

max
θ

Es∼pθold , a∼πθold

[
πθ(a | s)
πθold(a | s)

Aθold(s, a)− β ·DKL (πθold(· | s) ∥πθ(· | s))
]

(11)

(12)

The second version comes from the first via the method of Lagrange multipliers so these are two
equivalent formulations. However, comparing these two versions, tuning δ (in the first version)
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is generally easier than tuning β in the second version. Also, for the second verison in practice,
TRPO uses the maximum over KL divergences conditioned on each state instead of the mean.
In other words, optimize:

max
θ

Es∼pθold , a∼πθold

[
πθ(a | s)
πθold(a | s)

Aθold(s, a)

]
− β ·max

s
[DKL (πθold(· | s) ∥πθ(· | s))] (13)

(14)

TRPO solves this optimization problem by making a linear approximation to the objective
Lπθold

(πθ), a quadratic approximation to the constraint and then using a conjugate gradient
algorithm.

Then, the problem becomes:

max
θ

g · (θ − θold)−
β

2
(θ − θold)TF (θ − θold)

where g = ∂
∂θLπθold

(πθ)
∣∣∣
θ=θold

and F = ∂2

∂θ2KLπθold
(πθ)

∣∣∣
θ=θold

.

This problem can be solved efficiently using the conjugate gradient algorithm.

2.12 Proximal Policy Optimization (PPO)

(This section is written independently of the previous section on trust regional policy optimization
so that it is self-complete, which means there are some repetitions here)

There are two major issues with vanilla policy gradient methods. Firstly, it is difficult to
optimize in the sense that it is difficult to find the right step size to use in gradient descent.
The input data distribution is non-stationary - you sample trajectories using a learned policy,
then you use those samples to update your policy, then you use this updated policy to sample
new trajectories. However, if, at any point in time, you use a set of bad samples and therefore,
your optimisation step is wrong, this could lead to performance collapse - with the bad samples,
you take a ”wrong step” to get a poor policy, with which you sample new trajectories which
are also poor which you then use to optimise again. The second issue is that the algorithm
is sample inefficient - with any particular set of sampled trajectories, we carry out one step of
gradient descent and then throw those samples out. For future optimisation steps, we sample
new trajectories. Although we have made some modifications to the basic vanilla PG algorithm
like we found the actor-critic methods, they are still insufficient in completely curbing these
issues.

We now derive the building blocks of Trust Region Policy Optimisation (TRPO): We already
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saw the performance difference lemme:

Vπ′ − Vπ =
1

1− γ
Es∼dπ′ [Ea∼π′ [Aπ(s, a)]]

Now, suppose, our current policy is π. In our next step, we essentially want to maximize the
difference between Vπ′ − Vπ. Therefore,

argmax
π′

Vπ′ − Vπ = argmax
π′

1

1− γ
Es∼dπ′ [Ea∼π′ [Aπ(s, a)]]

= argmax
π′

1

1− γ
Es∼dπ′

[
Ea∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]]
≈ argmax

π′

1

1− γ
Es∼dπ

[
Ea∼π

[
π′(a|s)
π(a|s)

Aπ(s, a)

]]
=: argmax

π′
Lπ(π′)

where, in the second last line, we made the approximation dπ
′ ≈ dπ. This approximation only

holds true if

||Vπ′ − Vπ − Lπ(π′)|| ≤ C
√
Est∼π [DKL(π(·|st)||π′(·|st))]

With this, TRPO maximises Lπ(π′) subject to Es∼π [DKL(π(·|s)||π′(·|s))] ≤ δ. Note that, in
actual implementation, we use a learned approximation for the advantage function.

Also note that we get monotonic improvement since the KL divergence is zero when π′ = π
whereas Lπ(π) = 0 too, therefore, the performance of π′ is at least as good as π.

PPO [4] slightly modifies this - instead of placing a harsh constraint in the optimization pro-
cess (which requires conjugate gradient descent otherwise), instead PPO brings in 2 variants.

The first is to maximize Est∼dπ,at∼π
[
π′(at|st)
π(at|st) A

π(st, at)− β ·DKL(π
′(·|st)||π(·|st))

]
. If the KL-

divergence is too high, we adaptively increase β and if it is small, then we decrease β. The other

variant is as follows - define rt(θ) :=
πθ′ (at|st)
πθ(at|st) . Then, maximize

Eτ∼πθ

[
T−1∑
t=0

[min(rt(θ)A
πθ (st, at), clip(rt(θ), 1− ϵ, 1 + ϵ)Aπθ (st, at))]

]
.

The second variant is more commonly used. In practical implementations, we often add an
entropy bonus (similar to SAC) to encourage exploration and prevent collapsing to a local
optimal.

32



In both variants, the algorithm uses an advantage estimator Âπ(st, at). PPO uses Generalized
Advantage Estimator (GAE).

First, we define N -step advantage estimators:

Â
(1)
t = rt + γV (st+1)− V (st)

Â
(2)
t = rt + γrt+1 + γV (st+2)− V (st)

Â
(∞)
t = rt + γrt+1 + γ2rt+2 + · · · − V (st).

If we define
δVt = rt + γV (st+1)− V (st),

then, these become:

Â
(1)
t = δVt ,

Â
(2)
t = δVt + γδVt+1,

Â
(k)
t =

k−1∑
l=0

γlδVt+l.

Thus, generally,

Â
(k)
t =

k−1∑
l=0

γlrt+l + γkV (st+k)− V (st).

GAE is an exponentially-weighted average of k-step estimators:

Â
GAE(γ,λ)
t = (1− λ)

(
Â

(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)
= (1− λ)

(
δVt + λ(δVt + γδVt+1 + γ2δVt+2) + . . .

)
= (1− λ)

(
δVt (1 + λ+ λ2 + . . . ) + γδVt+1(λ+ λ2 + . . . ) + . . .

)
= (1− λ)

(
δVt

1

1− λ
+ γδVt+1

λ

1− λ
+ γ2δVt+2

λ2

1− λ
+ . . .

)
=

∞∑
l=0

(γλ)lδVt+l.

PPO uses a truncated version of a GAE:

Ât =

T−t−1∑
l=0

(γλ)lδVt+l
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Algorithm: PPO (Actor-Critic Style)

1: for iteration = 1, 2, . . . do
2: for actor = 1, 2, . . . , N do
3: Run policy πθold in environment for T timesteps

4: Compute advantage estimates Â1, . . . , ÂT
5: end for
6: Optimize surrogate objective L with respect to θ, using K epochs and minibatch

size M ≤ NT
7: θold ← θ
8: end for

Algorithm: PPO with GAE

1: Initialize parameters ϕ, environment state s
2: for iteration k = 1, 2, . . . do
3: ϕold ← ϕ
4: (τ, s) = rollout(s, πϕold

)
5: (s1, a1, r1, . . . , sT ) = τ
6: vt = Vϕ(st) for t = 1 : T
7: (A1:T , y1:T ) = GAE(r1:T , v1:T , γ, λ)
8: for m = 1 :M do
9: ρt =

πϕ(at|st)
πϕold

(at|st) for t = 1 : T

10: ρ̃t = clip(ρt) for t = 1 : T

11: L(ϕ) = 1
T

∑T
t=1

[
λTD(Vϕ(st)− yt)2 − λPGmin(ρtAt, ρ̃tAt)− λent H(πϕ(·|st))

]
12: ϕ← ϕ− η∇ϕL(ϕ)
13: end for
14: end for

2.13 Soft Actor-Critic (SAC)

Soft Actor-Critic [5] is an off-policy actor-critic algorithm that aims to learn a policy that
maximizes rewards while also acting as stochastically as possible. In other words, if there are
two actions that both achieve the same maximum rewards, our goal would be to assign nearly
equal probability mass to both of them. This falls under a general framework called maximum
entropy reinforcement learning where the goal is to maximize (assume a finite horizon task with
discount factor γ = 0):

J(θ) =

T∑
t=0

Est∼pπθ ,at∼πθ
[r(st, at) + αH(π(· | st))] (15)

where H(p) is the entropy of the distribution p.

There are many benefits to learning such policies. Firstly, sometimes we would want our agents
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to learn multiple strategies for solving a task. Imagine building an agent that plays chess - it
would be a problem if the agent acts deterministically (or close to deterministically) because then
its opponent could very well predict its moves. Secondly, a highly stochastic policy would also
end up doing more exploration allowing us to potentially uncover even more optimal strategies
as training progresses, instead of collapsing to suboptimal ones.

First, we define the modified Bellman backup operator that gets us the soft Q-value correspond-
ing to J(θ) as in equation 15:

Definition 9. (Bellman backup for soft Q-value). The soft Q-value of a fixed policy π can be
computed by repeatedly applying the modified Bellman backup operator:

τπQπ(st, at) := r(st, at) + γEst+1∼p(·|st,at) [V (st+1)]

where
V (st) = Eat∼π [Qπ(st, at)− log π(at | st)] .

The fact that this converges comes from the following result:

Lemma 17. For any mapping Q0
π : S × A → R with |A| < ∞ and Qk+1

π = τπQkπ. Then, the
sequence Qkπ converges to the soft Q-value of π as k →∞.

Proof. Define rπ(st, at) = r(st, at)+Est+1∼P (·|st,at) [H(π(·|st+1))]. Then, Qπ(st, at)← rπ(st, at)+
γEst+1∼P,at+1∼π [Q(st+1, at+1)] is the update rule. Given |A| <∞, the entropy augment reward
rπ is bounded. Using this, we can show the convergence as required following similar steps as
for classical policy evaluation.

Given this evaluation, we can then do policy improvement as follows:

πnew = arg min
π′∈Π

DKL

(
π′(· | st) ||

exp(Qπold
(st, ·))

Zπold(st)

)
where Zπold is the partition function that normalizes the distribution. We can prove that this
results in an improved policy as follows:

Lemma 18. Let πold ∈ Π and let πnew be the resulting policy from the soft-policy improvement
step. Then, Qπnew(st, at) ≥ Qπold(st, at) for all (st, a) ∈ S ×A with |A| <∞.

Proof. Given πold with corresponding Qπold and V πold , we can define

πnew(· | st) = arg min
π′∈Π

DKL(π
′(·|st)|| exp(Qπold(st, ·)− logZπold(st)))

=: arg min
π′∈Π

Jπold
(π′(·|st)).

Now, Jπold
(πnew(·|st)) ≤ Jπold

(πold(·|st)) since we could choose πnew = πold in our minimization
process. Therefore, expanding this line, we get:
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Eat∼πnew
[log πnew(at | st)−Qπold(st, at) + logZπold(st)]

≤ Eat∼πold
[log πold(at | st)−Qπold(st, at) + logZπold(st)]

Since Zπold is independent of at, this reduces to

Eat∼πnew [Q
πold(st, at)− log πnew(at | st)] ≥ V πold(st).

Then,

Qπold(st, at) = r(st, at) + γEst+1∼P [V πold(st+1)]

≤ r(st, at) + γEst+1∼P
[
Eat+1∼πnew [Q

πold(st+1, at+1)− log πnew(at+1 | st+1)]
]
.

· · ·
· · ·
≤ Qπnew(st, at)

where the expansion uses Eat∼πnew [Q
πold(st, at)− log πnew(at | st)] ≥ V πold(st). The convergence

follows from the previous lemma.

The soft-policy iteration algorithm essentially works like policy iteration except we alternate
between soft policy evaluation and soft policy improvement as described above. This algorithm
will, in fact, converge to the optimal policy as proven in the following theorem:

Theorem 19. The soft policy iteration algorithm over π ∈ Π converges to a policy π∗ such
that Qπ

∗
(st, at) ≥ Qπ(st, at) for all π ∈ Π and (st, at) ∈ S ×A, assuming |A| <∞.

Proof. We know by the previous lemma that Qπi is monotonically increasing. However, Qπ is
bounded above since the reward and entropy (given |A| < ∞) are bounded above. Therefore,
the policy iteration will converge to some π∗. Now, we claim that this policy is optimal. Since
π∗ is the policy at convergence, we have that Jπ∗(π∗(·|st)) < Jπ∗(π(·|st)) for all π ∈ Π such that
π ̸= π∗. From this, we can easily show that Qπ

∗
(st, at) > Qπ(st, at) for all st and at.

The catch, however, is that performing the exact optimization in each of these steps may not
be tractable. We now describe the practical algorithm we get from SAC.

In SAC, we parametrize three function: Vψ(st) (to estimate the soft state-value function),
Qϕ(st, at) (to estimate the soft state-action value function) and πθ(at|st). Although technically
we do not need to have separate function approximators for V and Q, doing this improves
training stability. In practice, Vψ(st) and Qϕ(st, at) could be neural networks where as the
policy could be Gaussian with mean and covariance given by neural networks.
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The soft value function is trained to minimize the following loss:

JV (ψ) = Est∼D

[
1

2

(
Vψ(st)− Eat∼πθ(·|st) [Qϕ(st, at)− log πθ(at|st)]

)2]
.

Here D is the replay buffer. The gradient is computed as the following unbiased estimator:

∇ψJV (ψ) = ∇ψVψ(st)(Vψ(st)−Qϕ(st, at) + log πθ(at|st))

where the actions are sampled at ∼ πθ(·|st).

The soft Q-function is trained to minimize the soft Bellman residual:

JQ(ϕ) = Est,at∼D

[
1

2

(
Qϕ(st, at)− Q̂(st, at)

)2]
where Q̂(st, at) = r(st, at) + γEst+1∼p

[
Vψ̄(st+1)

]
. Here Vψ̄ is our target network where ψ̄ is an

exponentially moving average of the value network weights. The gradient of this is computed
as the estimator:

∇ϕ(JQ(ϕ)) = ∇ϕQϕ(st, at)(Qϕ(st, at)− r(st, at)− γVψ̄(st+1)).

Finally, we can find the policy by minimizing the expected KL-divergence:

Jπ(ϕ) = Est∼D

[
DKL

(
πϕ(· | st) ||

exp (Qθ(st, ·))
Zθ(st)

)]
.

To minimize this, we use the reparametrization trick: let at = fϕ(ϵt; st) where ϵt is an input
noise vector sampled from a fixed distribution (say, normal). Then,

Jπ(ϕ) = Est∼D,ϵt∼N [log πϕ (fϕ(ϵt; st) | st)−Qθ (st, fϕ(ϵt; st))] .

Here we ignored the partition function since it does not depend on ϕ.

Then,

∇̂ϕJπ(ϕ) = ∇ϕ log πϕ(at | st) + (∇at log πϕ(at | st)−∇atQθ(st,at))∇ϕfϕ(ϵt; st),
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Algorithm 1: Soft Actor-Critic

1: Initialize parameter vectors ψ, ψ̄, θ, ϕ
2: for each iteration do
3: for each environment step do
4: at ∼ πϕ(at | st)
5: st+1 ∼ p(st+1 | st, at)
6: D ← D ∪ {(st, at, r(st, at), st+1)}
7: end for
8: for each gradient step do
9: ψ ← ψ − λV ∇̂ψJV (ψ)

10: for i ∈ {1, 2} do
11: θi ← θi − λQ∇̂θiJQ(θi)
12: end for
13: ϕ← ϕ− λπ∇̂ϕJπ(ϕ)
14: ψ̄ ← τψ + (1− τ)ψ̄
15: end for
16: end for

2.14 Deterministic Policy Gradient Methods (DPG)

Notation: We denote rγt =
∑∞
k=t γ

k−tr(sk, ak). Then, V
π(s) = E[rγ1 |S1 = s;π] and Qπ(s, a) =

E[rγ1 |S1 = s,A1 = a;π]. The density at state s′ after transitioning for t timesteps from state s is
p(s→ s′, t, π). The improper, discounted state distribution is pπ(s′) :=

∫
S
∑∞
t=1 γ

t−1p1(s)p(s→
s′, t, π)ds.

Suppose, A = Rm and S = Rd.

Goal: Learn a policy which maximizes J(π) := E[rγ1 |π]. With our notation, this becomes:

J(πθ) =

∫
S
pπ(s)

∫
A
πθ(s, a)r(s, a)dads = Es∼pπ,a∼πθ

[r(s, a)].

Intuition behind the deterministic policy gradient theorem:

Most model-free RL algorithms use policy evaluation and policy improvement together. Eval-
uation approximates Qπ(s, a) and then improvement updates the policy, most often through

πk+1(s) = argmaxaQ
πk

(s, a). However, in continuous action spaces, this is difficult since the
argmaxa requires a global maximisation at each step and our action space is very large (because

it is continuous). Instead, the idea is to move the policy in the direction of the gradient of Qπ
k

(instead of maximizing it altogether). Then

θk+1 = θk + αEs∼pθk [∇θQπ
θk

(s, πθ
k

(s)].
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By chain rule this becomes

θk+1 = θk + αEs∼pθk [∇θπθ(s)∇aQπ
θk

(s, a)|a=πθ(s)].

Notation: To distinguish between stochastic and deterministic policy, we will use µθ(s) as our
deterministic policy.

More formally, our performance objective is

J(µθ) =

∫
S
pµθ (s)r(s, µθ(s))ds = Es∼pµθ [r(s, µθ(s))]

.

Then,

∇θJ(µθ) =
∫
S
pµθ (s)∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)ds = Es∼pµθ

[
∇θµθ(s)∇aQµθ (s, a)|a=µθ(s)

]
(16)

On-policy algorithm: We have a critic that estimates the action-value function while the
actor updates the policy by ascending the gradient of the action-value function (using equation
16). The critic, Qw(s, a) approximates Qµ(s, a). The update rules are :

δt = rt + γQw(st+1, at+1)−Qw(st, at)
wt+1 = wt + αwδt∇wQw(st, at)
θt+1 = θt + αθ∇θµθ(st)∇aQw(st, at)|a=µθ(s)

Off-policy algorithm: Suppose we have trajectories generated by behavior policy π(s, a). The
new objective becomes:

Jπ(µθ) =

∫
S
pπ(s)V µ(s)ds =

∫
S
pπ(s)Qµ(s, µθ(s))ds

and the update rule becomes

∇θJπ(µ(θ)) ≈
∫
S
pπ(s)∇θµθ(a|s)Qµ(s, a)ds = Es∼pπ

[
∇θµθ(s)∇aQµ(s, a)|a=µθ(s)

]
.

Now we can develop an actor-critic algorithm similar to the on-policy case:our critic is Qw(s, a):

δt = rt + γQw(st+1, µθ(st+1))−Qw(st, at)
wt+1 = wt + αwδt∇wQw(st, at)
θt+1 = θt + αθ∇θµθ(st)∇aQw(st, at)|a=µθ(s)
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A Probability

A.1 Total Variation Distance

This section is reading notes from [6].

A.1.1 Defintions and Properties

Total variation distance is a metric for measuring the distance between two distributions.

Definition 10. (Total Variation Distance). The total variation distance between two probabil-
ity distributions µ and ν on X is defined by

||µ− ν||TV = max
A⊆X

|µ(A)− ν(A)|.

We have the equivalent formulation:
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Proposition 20. For µ and ν distributions on X , we have:

||µ− ν||TV =
1

2

∑
x∈X
|µ(x)− ν(x)||

Proof. Let B = {x : µ(x) ≥ ν(x)} and let A ⊂ X be any event. Then,

µ(A)− ν(A) ≤ µ(A ∩B)− ν(A ∩B)

≤ µ(B)− ν(B).

Similarly,
ν(A)− µ(A) ≤ ν(BC)− µ(BC).

Note that µ(B)− ν(B) = ν(BC)− µ(BC) since probabilities sum to 1.

µ(B)− ν(B) + ν(BC)− µ(BC) =
∑
x∈B
|µ(x)− ν(x)|+

∑
x∈BC

|ν(x)− µ(x)| =
∑
x

|µ(x)− ν(x)|.

Now, consider A as in the definition of the TV distance - this A is either B or BC i.e. |µ(A)−
ν(A)| is maximize when either A = B or A = BC . Then,

||µ− ν||TV =
1

2

(
µ(B)− ν(B) + ν(BC)− µ(BC)

)
=

1

2

∑
x

|µ(x)− ν(x)|.

Corollary 21. We also have that (using the proof above)

||µ− ν||TV =
∑

x∈X ,µ(x)≥ν(x)

µ(x)− ν(x).

Corollary 22. Total variation distance satisfies the triangle inequality:

||µ− ν||TV ≤ ||µ− η||TV + ||η − ν||TV

A.1.2 Coupling

A coupling of two probability distributions is a way of defining a joint distribution over two
random variables such that their marginals match the original distributions. More formally:

Definition 11. (Coupling). A coupling of two probability distributions µ and ν is a pair of
random variables (X,Y ) defined on a single probability space such that the marginal distribution
ofX is µ and the marginal distribution Y is ν. So, the coupling (X,Y ) satisfies P(X = x) = µ(x)
and P(Y = y) = ν(y).
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Example: Consider µ and ν both be Bernoulli random variables with parameter 0.5. One way
to couple µ and ν is to define the joint distribution (X,Y ) such that P(X = x, Y = y) = 1

4 for
all x, y. Another way is to define X to be the independent Bernoulli variable and let Y = X.

Given a coupling (X,Y ) with joint distribution π(X,Y ) = P (X = x, Y = y), by the law of total
probability

∑
x π(X = x, Y = y) = ν(y) (and the same for the marginal of X). Conversely, if we

have a probability distribution π on X ×X such that
∑
y π(x, y) = µ(x) and

∑
x π(x, y) = ν(y),

we can find a pair of random variables (X,Y ) that have π as their joint distribution, and so
(X,Y ) is a coupling of µ and ν.

Proposition 23. Let p and q be two probability distributions on X . Then,

||p− q||TV = inf{P(X ̸= Y ) | (X,Y ) is a coupling of p and q}.

In fact, there is a coupling where this infimum is achieved which we call the optimal coupling.

Proof. For any coupling of p and q and any event A ⊂ X , we have that:

p(A)− q(A) = P(X ∈ A)− P(Y ∈ A)
≤ P(X ∈ A, Y ̸∈ A)
≤ P(X ̸= Y ).

where the second inequality comes from noting:

P{X ∈ A}−P{Y ∈ A} = P{X ∈ A, Y ∈ A}+P{X ∈ A, Y /∈ A}−P{X ∈ A, Y ∈ A}−P{X /∈ A, Y ∈ A}.

As such,
||p− q||TV ≤ inf{P(X ̸= Y ) | (X,Y ) is a coupling of p and q}.

Now, we construct a coupling for which this is an equality.

Let m =
∑
x∈X min(p(x), q(x)). Then,

m =
∑

x∈X ,p(x)≤q(x)

p(x) +
∑

x∈X ,p(x)>q(x)

q(x)

= 1−
∑

x∈X ,p(x)>q(x)

(p(x)− q(x))

= 1− ||p− q||TV

where the second inequality comes from adding and subtracting
∑
x∈X ,p(x)>q(x) p(x).

So
m = 1− ||p− q||TV.

Now, flip a coin with probability of heads equal to m = 1− ||p− q||TV.
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1. If we get heads, then define Z as follows: sample x from the probability distribution

ψ(x) = min(p(x),q(x))
m and set X = Y = Z.

2. If we get tails, then choose X from the probability distribution

φ1(x) =


p(x)− q(x)
∥p− q∥TV

if p(x) > q(x),

0 otherwise,

and choose Y independently from the distribution:

φ2(y) =


p(y)− q(y)
∥µ− ν∥TV

if p(y) > q(y),

0 otherwise.

(Note: when the coin gives us tails, X ̸= Y as φ1 and φ2 are positive on disjoint subsets
of X )

Then,

mψ + (1−m)φ1 = p

mψ + (1−m)φ2 = q

so we get the appropriate marginals. Also, X = Y if and only if the coin toss gives us heads
which happens with probability m, so P (X ̸= Y ) = m = ||p− q||TV.
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