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1 Introduction

These are notes on trust region optimization methods that I took as I read [1]. Intuitively,
line search methods first make a quadratic model of the function f to generate a step direction
and calculate the step length (preferably one that satisfies the Wolfe Conditions). In contrast,
trust region methods also generate a model of the function f - but they define a region around
where we are currently such that inside that region we believe our model is more or less the
same as function f and then step to the minimizer of the model. Therefore, we would want
our model to be one that we can in fact solve.

2 Model

Let us first discuss how to model the function f in the first place. This is simply done through
Taylor expansion. Suppose, we are currently at xk and we choose to take a step in direction
p. Then, if we expand f , we get:

f(xk + p) = fk + gTk p+
1

2
pT∇2f(xk + tp)p

where t ∈ (0, 1), fk := f(xk) and gk := ∇f(xk). Now, suppose we approximate the matrix
∇2f(xk) with Bk, such that Bk is a symmetric matrix. Then, we model the function to be:

mk(p) := fk + gTk p+
1

2
pTBkp.

Therefore, at each step, we define the trust region to be a sphere of radius ∆k around xk.
Therefore, from xk, we will take a step pk such that ||pk|| ≤ ∆k and it solves the model mk.
So, we are searching for the solution:

arg min
p∈Rn

mk(p)
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To emphasize again, note that within the trust region, we are solving the model, not the
function f . Given a step pk, we may think that we have reduced the function f by a certain
amount, but may end up reducing the function by a different amount. To quantify this, we
define:

ρk :=
f(xk)− f(xk + pk)

mk(0)−mk(pk)
.

Note that the numerator is the the amount by which f got reduced after we took the step
pk from xk. The denominator is the amount by which we reduced the model. This ratio
therefore is also a measure of how good our model is - if it is close to 1, it means our model
represented the function well and therefore the step pk reduced f by the same amount by
which it reduced mk.

Generally, the way trust region methods work is that we start at xk, fix a radius ∆k to define
the trust region, make a model mk of the function inside this trust region and then take a
step pk that reduces the model mk and stays inside the trust region. Then, we calculate
ρk to get an estimation of how good our model is. If it is close to 1, we expand our trust
region radius (because our model is good we can take a step that’s longer). On the other
hand, if ρk is close to 0, we realise that our model is not too good and so we choose to not
take the step pk, we make the trust region smaller to try and find a more accurate model
and then try again.
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Trust Region Algorithm Outline:

Hyperparameters: ∆max > 0,∆0 ∈ (0,∆max), η ∈ [0,
1

4
) :

For k=0,1, 2,...:

Solve mk to find pk

Calculate ρk

If ρk <
1

4
:

∆k :=
1

4
∆k

Else:

If ρk >
3

4
and ||pk|| = ∆k:

∆k+1 := min(2∆k,∆max)

Else:

∆k+1 := ∆k

if ρk > η:

xk+1 := xk + pk

Else:

xk+1 := xk

3 How to solve the model mk

3.1 Solving model using Cauchy Point:

We define the solutions of two problems:

psk := arg min
p∈Rn

fk + gTk p s.t ||p|| ≤ ∆k

τ sk := argmin
τ≥0

mk(τp
s
k) = fk + gTk (τp

s
k) +

1

2
τ 2(psk)

TBkp
s
k s.t ||p|| ≤ ∆k

Then, we define:
pCk := τkp

s
k.
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Now, the solution to the first problem is simply the same as what we saw in line search
methods:

psk = − ∆k

|gk||
gk.

Solving the second problem is slightly trickier.

First, consider the case where gTk Bkgk ≤ 0 : Then, mk(τp
s
k) decreases monotonically with τ

whenever gk ̸= 0. So, τk is just the largest value such that we are inside the trust region, so
τk = 1.

Next, consider the case where gTk Bkgk > 0 : Then, mk(τp
s
k) is convex quadratic in τ . So,

either τk is going to be the value such that τkp
s
k minimizes mk which is ||gk||3

∆kg
T
k Bkgk

(differentiate

mk(τp
s
k) with respect to τ and use the definition of psk to get this) or it is going to be 1.

Putting these together, we get the following solution:

pCk := −τk
∆k

||gk||
gk

where

τk :=

{
1 if gTk Bkgk ≤ 0

min( ||gk||3

∆kg
T
k Bkgk

, 1) otherwise
(1)

While this method seems concrete, we can improve on it. For starter, notice that our step
direction psk is not affected by Bk at all, meaning that the second order terms are not used
to generate the step direction at all. It only affects the step length τk. We could try and use
information from Bk to determine the step direction too.

3.2 Solving model using Dogleg Method:

Note 1: We use this method for only when Bk is positive definite. There are some fairly
simple and nice ways to make Bk positive definite without compromising on accuracy much.

Note 2: We will drop the k in subscripts for easier notation.

When B is positive definite, from our study of line search methods, we know that the solution
is just pB := −B−1g. So when this is a step that keeps us inside the trust region, we will
choose this as our solution. Therefore,

p∗(∆) = pB = −B−1g
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when ∆ ≥
∣∣|pB|∣∣. We wrote p∗ as a function of the trust region radius to emphasize the fact

that our step will depend on the radius. Of course, the other case is where ∆ <
∣∣|pB|∣∣. In

this case, the quadratic term does not contribute much to our model, so we only keep the
linear terms to get

p∗(∆) ≈ −∆
g

||g||
.

Dogleg method essentially gives us a solution that interlaces these two solutions. The solution
is:

p̃(τ) :=

{
τpU , 0 ≤ τ ≤ 1

pU + (τ − 1)(pB − pU), 1 ≤ τ ≤ 1
(2)

where pU := − gT g
gTBg

g and pB := −B−1g.

Now, we will prove a theorem that shows that the path we described parametrised by τ does
not overlap and that along this path we do minimise our model:

Theorem 1. Let B be positive definite. Then,
(i) ||p̃(τ)|| is an increasing function of τ and
(ii) m(p̃(τ)) is a decreasing function of τ .

Proof. It is very easy to see that the theorem is true for τ . We focus on τ ∈ [1, 2].
We prove (i) first. Define S(α) := 1

2
||p̃(1 + α)||2. Expanding using (2), we get S(α) =

1
2

∣∣|pU + α(pB − pU)|
∣∣2 = 1

2

∣∣|pU |∣∣2+α(pU)T (pB −pU)+ 1
2
α2

∣∣|pB − pU |
∣∣2. Then, for α ∈ (0, 1),

S ′(α) = −(pU)T (pU − pB) + α
∣∣|pU − pB|

∣∣2
≥ −(pU)T (pU − pB)

=
gTg

gTBg
gT (− gTg

gTBg
g +B−1g)

= gTg
gTB−1g

gTBg
(1− (gTg)2

(gTBg)(gTB−1g)
)
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Now, we show that (gT g)2

(gTBg)(gTB−1g)
≥ 1:

(gTg)2

(gTBg)(gTB−1g)
=

(gTg)2

(gTBBTg)(BTg)−1g(gTB−1(B−1)Tg)((B−1)Tg)−1g

=
(gTg)2

(BTg ·BTg)(BTg)−1g((B−1)Tg · (B−1)Tg)g−1BTg

≥ (gTg)2

|BTg · (B−1)Tg|2
Using Cauchy-Schwarz Inequality

=
(gTg)2

|gTBT (B−1)Tg|2

=
(gTg)2

(gTg)2

= 1.

Using this, we get S ′(α) ≥ 0 proving (i).

Now, we prove (ii) (for τ ∈ [1, 2]):

Define Ŝ(α) := m(p̃(1 + α)). We will show Ŝ ′(α) ≤ 0 for α ∈ (0, 1).

Ŝ(α) = (pB − pU)T (g +BpU) + α(pB − pU)TB(pB − pU)

≤ (pB − pU)T (g +BpU +B(pB − pU))

= (pB − pU)T (g +BpB)

= 0.

4 Convergence Properties

First, we prove the following lemma:

Lemma 2. The Cauchy point pCk satisfies

mk(0)−mk(pk) ≥
1

2
||gk||min(∆,

||gk||
||Bk||

)

where we are using the Frobenius norm of matrices.

Proof. We drop the k’s in subscripts for easier notation.
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Case 1: gTBg ≤ 0
In this case, we have τ = 1, so

m(pC)−m(0) = m(− ∆

||g||
g)− f

= − ∆

||g||
||g||2 + 1

2

∆2

||g||2
gTBg

≤ −∆ ||g||

≤ − ||g||min(∆,
||g||
||B||

)

Case 2: gTBg > 0 and ||g||3
∆gTBg

≤ 1
Then,

τ :=
||g||3

∆gTBg
.

So,

m(pC)−m(0) = − ||g||4

gTBg
+

1

2
gTBg

||g||4

(gTBg)2

= −1

2

||g||4

gTBg

≤ −1

2

||g||4

||B|| ||g||2

= −1

2

||g||2

||B||

≤ −1

2
||g||min(∆,

||g||
||B||

)

Case 3: gTBg > 0 and ||g||3
∆gTBg

> 1
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Then, τ = 1. So,

m(pC)−m(0) = − ∆

||g||
||g||2 + 1

2

∆2

||g||2
gTBg

≤ −∆ ||g||+ 1

2

∆2

||g||2
||g||3

∆

= −1

2
∆ ||g||

≤ −1

2
||g||min(∆,

||g||
||B||

Using this, we can now prove the following theorem which shows that we are minimising our
model m:

Theorem 3. Let pk be any vector such that ||pk|| ≤ ∆k and mk(0) −mk(pk) ≥ c2(mk(0) −
mk(p

C
k )). Then, pk satisfies:

mk(0)−mk(pk) ≥
c2
2
||g||min(∆k,

||gk||
||Bk||

).

In particular, if pk is the exact solution p∗k = argminp∈Rn mk(p) := fk+ gTk p+
1
2
pTBkp (where

||p|| ≤ ∆k). Then, it satisfies:

mk(0)−mk(pk) ≥
1

2
||g||min(∆k,

||gk||
||Bk||

).

Proof. Given ||pk|| ≤ ∆k, we use Lemma 2 to write:

mk(0)−mk(pk) ≥ c2(mk(0)−mk(p
C
k )) ≥

1

2
c2 ||g||min(∆k,

||gk||
||Bk||

)

.

Note that when pk = p∗k, the step is the Cauchy point and therefore, the first inequality
becomes equality with c2 = 1. From that we get the second part of the theorem.

Next, we prove two theorems to show these methods end up converging to stationary points
- which ultimately is the real goal of optimisation.
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Theorem 4. Let η = 0 in our algorithm (the pseudocode is above). Suppose, ||Bk|| ≤ β for
some constant β. Suppose, f is bounded on the level set S := {x : f(x) ≤ f(x0)}.

Now, suppose f is Lipschit continuously differentiable in the neighbourhood S(R0) := {x :
||x− y| | ≤ R0} (for some y ∈ S) with Lipschitz constant β1.

Finally, suppose all approximate solutions of minp∈Rn mk(pk) = fk + gTk p+
1
2
pTkBkpk satisfies:

(a) mk(0)−mk(pk) ≥ c1 ||gk||min(∆k,
||gk||
||Bk||

) for some c1 ∈ (0, 1].

(b) ||pk|| ≤ γ∆k for some γ ≥ 1.

Then,
lim inf
k−→∞

||gk|| = 0

Proof. We first bound |ρk − 1|:

|ρk − 1| =
∣∣∣∣(f(xk)− f(xk + pk))− (mk(0)−mk(pk))

mk(0)−mk(pk)

∣∣∣∣
=

∣∣∣∣−f(xk + pk) +mk(pk)

mk(0)−mk(pk)

∣∣∣∣ .
Now, we use mean value theorem (with some algebraic manipulation - adding a zero term)
to write:

f(xk + pk) = f(xk) + g(xk)
Tpk +

∫ 1

0

[g(xk + tpk)− g(xk)]
Tpkdt.

Then, we use the definition of mk to write:

|mk(pk)− f(xk + pk)| =
∣∣∣∣12pTkBkpk −

∫ 1

0

[g(xk + tpk)− g(xk)]
Tpkdt

∣∣∣∣ (3)

≤ β

2
||pk||2 + β2 ||pk||2 (4)

where we got the last inequality using the Lipschitz continuity condition: ||g(xk + tpk)− g(xk)|| ≤
β1 ||xk + tpk − xk|| and we assumed ||pk|| ≤ R0 to ensure both xk and xk + tpk are inside
S(R0).

Now, we suppose, for contradiction:

Claim A: There exists ϵ > 0 and Z > 0 such that ||gk|| ≥ ϵ for any k ≥ Z. Then, for any
k ≥ Z, we have

mk(0)−mk(pk) ≥ c1 ||gk||min(∆,
||gk||
||Bk||

≥ c1ϵmin(∆,
ϵ

β
). (5)
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Now, we use (4) and (5) to write:

|ρk − 1| ≤
γ2∆2

k(
β
2
+ β1)

c1ϵmin(∆k,
ϵ
β
)
.

Now, we define ∆̄ := min(1
2

c1ϵ

γ2(β
2
+β1)

, R0

γ
). We consider all ∆k ≤ ∆̄. Note that we added R0/γ

inside the min function to ensure that ||pk|| ≤ γ∆k since γ∆k ≤ γ∆̄ ≤ R0.

With this, since c1 ≤ 1 and γ ≥ 1, we have ∆̄ ≤ ϵ
β
. Thus, for any ∆k ∈ [0, ∆̄], we have

min(∆k,
ϵ
β
) = ∆k.

|ρk − 1| ≤
γ2∆2

k(
β
2
+ β1)

c1ϵ∆k

=
γ2∆k(

β
2
+ β1)

c1ϵ

≤
γ2∆̄(β

2
+ β1)

c1ϵ

≤ 1

2

where we got the last inequality using the definition of ∆̄.

Using this, we know ρk > 1
4
and so, in our algorithm, ∆k+1 ≥ ∆k whenever ∆k ≤ ∆̄. So,

∆k+1 =
1
4
∆k only if ∆ ≥ ∆̄. Together. we have

∆k ≥ min(∆k, ∆̄/4) (6)

for any k ≥ Z. Now, for the sake of contradiction: Claim B: suppose there exists an infinite
subsequence ϕ such that ρk ≥ 1

4
for any k ∈ ϕ.

Then, for any k ∈ ϕ and k ≥ Z, we have from (5):

f(xk)− f(xk+1) = f(xk)− f(xk + pk) ≥
1

4
[mk(0)−mk(pk)] ≥

1

4
c1ϵmin(∆k,

ϵ

β
)

where we got the first inequality using ρk ≥ 1
4
. Now, given f is bounded below, therefore,

limk∈ϕ,k−→∞ ∆k = 0. This contradicts (6) meaning our assumption, claim B, was wrong.
Therefore, ∆k+1 = 1

4
∆k at every iteration, so limk−→∞ ∆k = 0, which contradicts (6) again,

meaning our assumption, claim A, was wrong. Given ||gk|| is bounded below by 0, this
implies the theorem.
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Finally, we prove an even stronger theorem showing convergence to stationary points:

Theorem 5. Let η ∈ (0, 1/4) in our algorithm (the pseudocode is above). Suppose, ||Bk|| ≤ β
for some constant β. Suppose, f is bounded on the level set S := {x : f(x) ≤ f(x0)}.

Now, suppose f is Lipschit continuously differentiable in the neighbourhood S(R0) := {x :
||x− y| | ≤ R0} (for some y ∈ S).

Finally, suppose all approximate solutions of minp∈Rn mk(pk) = fk + gTk p+
1
2
pTkBkpk satisfies:

(a) mk(0)−mk(pk) ≥ c1 ||gk||min(∆k,
||gk||
||Bk||

) for some c1 ∈ (0, 1].

(b) ||pk|| ≤ γ∆k for some γ ≥ 1.

Then,
lim

k−→∞
gk = 0

.

Proof. Consider some m > 0 such that gm ̸= 0. By Lipschitz continuity, we have ||g(x) −
gm|| ≤ β1||x− xm|| for any x ∈ S(R0).

Now, define ϵ := 1
2
||gm||, R := min( ϵ

β1
, R0). Now, the open ball centered at xm - BR(xm) :=

{x : ||x − xm|| ≤ R} is contained in S(R0), meaning the Lipschitz contintuity of g holds
inside this open ball.

Then, x ∈ BR(xm) implies

||gm|| ≥ ||gm|| − ||g(x)− gm||
≥ ||gm|| − β1R

≥ ||gm|| − ϵ

= ||gm|| −
||gm||
2

=
1

2
||gm||

= ϵ.

Now, if the entire sequence {xk}k≥m is inside BR(xm), then ||gm|| ≥ ϵ > 0 for any k ≥ m.
Now, in the same way we contradicted claim A in theorem 4, we can show that this never
occurs. So, {xk}k≥m will have to get outside the open ball BR(xm) for some k. Let l ≥ m be
the smallest index such that xl+1 is outside BR(xm). Now, for k ∈ [m, l], we have ||gk|| ≥ ϵ.
Thus,

mk(0)−mk(pk) ≥ c1 ||gk||min(∆k,
||gk||
||Bk||

) ≥ c1ϵmin(∆k,
ϵ

β
).
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Thus,

f(xm)− f(xl+1) =
l∑

k=m

f(xk)− f(xk+1

≥
l∑

k=m

η(mk(0)−mk(pk)) Using definition of ρk

≥
l∑

k=m

ηc1ϵmin(∆k,
ϵ

β
)

Now, if ∆k ≤ ϵ
β
for k ∈ [m, l], we have

f(xm)− f(xl+1) ≥ ηc1ϵ

l∑
k=m

∆k

≥ ηc1ϵR Since we are summing over ∆k and xl+1 is outside BR(xm)

= ηc1ϵmin(
ϵ

β1

, R0)

So,

f(xm)− f(xl+1) ≥ ηc1ϵmin(
ϵ

β1

, R0). (7)

On the other hand, if ∆k >
ϵ
β
for some k ∈ [m, l], we have

f(xm)− f(xl+1) ≥ ηc1ϵ
ϵ

β
. (8)

Since the sequence {f(xk)}∞k=0 is decreasing and bounded below, therefore limk−→∞ f(xk) = f ∗

for some f ∗ > −∞.

now, we use (7) and (8) to write:

f(xm)− f ∗ ≥ f(xm)− f(xl+1)

≥ ηc1ϵmin(
ϵ

β
,
ϵ

β1

, R0)

=
1

2
ηc1 ||gm||min

(
||gm||
2β

,
||gm||
2β1

, R0

)
> 0.

Now, since limk−→∞ f(xk)− f ∗ = 0, we must have limk−→∞ ||gk|| = 0
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