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The Smooth Partition of Unity

Let X be a smooth manifold with open cover {Uα}α∈I. A smooth partition of unity sub-
ordinate to this open cover is a sequence of smooth functions {θi : X → R}i=1,2,... such
that:

(a) 0 ≤ θi(x) ≤ 1 for any x ∈ X.

(b) For any x ∈ X, there exists a neighbourhood Vx such that θi(y) = 0 for any y ∈ Vx holds
for at most finitely many i.

(c) For any i, supp(θi) := θ–1
i (R\{0}) ⊂ Uα for some α ∈ I.

(d) For any x ∈ X,
∑∞

i=1 θi(x) = 1.

It can be proven that every open cover of a smooth manifold admits a smooth partition of
unity subordinate to that cover. Additionally, if {Ui}i=1,..,N is a finite open cover, we can
take {θi}i=1,..,n such that supp(θi) ⊂ Ui for each i and θi = 0 for i > n in our original infinite
set of smooth functions.

The Bump Function

We want to show the following: given X is a smooth manifold with (U,ϕ) smooth chart
and p ∈ U, then there exists a smooth bump function β : X → R and open neighbourhoods
p ∈ W ⊆ V ⊆ U and V ⊆ U such that β(x) = 1 for x ∈ W, β(x) = 0 for x ̸∈ V and β(x) ∈ [0, 1]
for x ∈ X.

We first construct f1(x) to be

f1(x) =

{
e– 1

x if x > 0
0 if x ≤ 0

(1)
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Now, let

f2(x) =
f1(2 – x)

f1(2 – x) – f1(x – 1)
.

Note that f2(x) = 0 for any x ≥ 2, f2(x) = 1 for any x ≤ 1 and f2(x) ∈ [0, 1] for any x ∈ [1, 2].

Now, suppose X is a smooth manifold. Then, for any p ∈ X, there exists a chart (U,ϕ).
WLOG, suppose ϕ(p) = 0. Also suppose we have open neighbourhoods such that W ⊆
V ⊆ U with x ∈ W and V ⊆ U. Now, select ϵ > 0 such that B3ϵ(0) is inside Ũ (which is the
image of U under ϕ). Then, if W = ϕ–1(Bϵ(0)) and V = ϕ–1(B2ϵ(0)), our bump function is
defined to be

β(x) =

{
h(||ϕ(x)||

ϵ ) if x ∈ U
0 otherwise

With this function, B2ϵ(0) ⊂ B3ϵ(0) ⊆ Ũ which implies Ṽ ⊆ U.

Note that W ⊆ V ⊆ U with x ∈ W and V ⊆ U. We can easily check that β(x) = 1 for x ∈ W,
β(x) = 0 for x ̸∈ V and β(x) ∈ [0, 1] for x ∈ X.

Now, we move on to the first important result.

Theorem 1. Let X be a compact, smooth manifold of dimension m. Then, there exists N ≥ m and
a smooth embedding f : X −→ RN.

Proof. Pick any x ∈ X with the smooth chart (Ux, gx) near it. Then, there exists ϵx > 0 such
that Bϵx(gx(x)) ⊂ Ũx. Define Wx := g–1

x (Bϵx/2(gx(x))) and Vx := g–1
x (Bϵx(gx(x))) - both of

these are subsets of Ũx. Now, {Wx}x∈X is a covering of X and since X is compact, there is
a finite subcover given by W1, ...., Wn where Wi = Wxi . For each Wi, let Vi and gi be the
corresponding Vxi and gxi

.

Now, we use the following bump function:

ϕ : X → [0, 1] such that ϕi(x) =


1, if x ∈ Wi
0, if x ∈ X – Vi
0 ≤ ϕi(x) ≤ 1 otherwise

.

Then, we define hi(x) =

{
ϕi(x)gi(x), on Vi
0 outside Vi

.

Using these two functions, we define f : X → RN where N = n(1 + m) to be f(x) =
(ϕ1(x), ...,ϕn(x), h1(x), ..., hn(x)). This map is smooth. Furthermore, we claim that f is in-
jective. This is because, if f(x) = f(y), then ϕi(x) = ϕi(y) and hi(x) = hi(y) for each
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i. Given x ∈ Wj for some j, ϕj(x) = 1 and so ϕj(y) = 1 implying y ∈ Wj. Therefore,
gj(x) = ϕj(x)gj(x) = hj(x) = hj(y) = ϕj(y)gj(y) = gj(y). Given g is a homeomorphism, x = y,
showing that f is injective.

Given X is compact and f is injective and continuous, therefore f is a topological embed-
ding too. All that is left is to show that f is an immersion.

Given x ∈ X, x ∈ Wi for some i. Now, for any y ∈ Wi, given ϕi(y) = 1 and hi(y) =
gi(y), therefore, f(y) = (1, ..., 1, g1(y), ..., gn(y)). Now consider the chart (Wi, gi) where gi is
restricted to Wi. In this chart, gi looks like the identity, so its derivative also looks like the
identity which implies that Dfy has a non-zero m × m minor. Therefore, Dfx is injective,
implying f is a smoother immersion which tells us that f is a smooth embedding.

Lemma 2. Let X be a smooth manifold of dimension n. Then, there exists a smooth, proper function
from X to R.

Proof. For any open set of X, we can get a compact closure by mapping the open set to the
euclidean space using the chart function, then taking the closed ball around it and then
mapping it back to X. Let {Uα}α∈I be an open cover of X made up of subsets of X with
compact closure i.e Uα is compact for each α.

Let {θi} be a subordinate partition of unity s.t supp(θi) ⊂ Uαi for i = 1, 2, .... Now we define
the following smooth function: ρ : X → R to be ρ =

∑∞
i=1 iθi. Given (b) in our definition of

partition of unity, ρ(x) is finite.

We claim ρ is a proper map. Suppose K ⊆ R is compact. We want to show that ρ–1(K) is
compact.

Since K is compact, it is closed and bounded, meaning there exists some j > 0 such that
K ⊂ [–j, j]. Then, ρ–1(K) is also closed (since ρ is continuous) and is contained in the set
{x ∈ X|ρ(x) ≤ j}. We claim that if ρ(x) ≤ j, then at least one of the function θ1, ..., θj must
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take x to a non-zero value. If not, then:

ρ(x) =
∞∑
i=1

iθi(x)

=
∞∑

i=j+1

iθi(x)

≥
∞∑

i=j+1

(j + 1)θi(x)

= (j + 1)
∞∑
i=1

θi(x)

= (j + 1)

This means, ρ(x) ≥ j + 1 which is a contradiction.

With this, we can now write ρ–1(K) ⊆ {x ∈ X|ρ(x) ≤ j} ⊆ ∪j
i=1{x ∈ X|θi(x) ̸= 0} ⊆

∪j
i=1Uαi ⊆ ∪j

i=1Uαi . Since ∪j
i=1Uαi is compact, we see that ρ–1(K) is a closed subset of a

compact set, so it is compact.

Theorem 3. Let X be a smooth manifold of dimension n. Then, there exists N ≥ m and a proper,
smooth embedding f : X → Rn.

Proof. By Theorem 1, we have a smooth embedding g : X → Rp and by Lemma 2, we
have a proper, smooth function ρ : X → R. Now, with N := p + 1, define f : X → RN such
that f(x) = (g(x), ρ(x)). This is a smooth embedding - f is clearly smooth and since g is a
smooth embedding, therefore, the derivative of f at any x is injective and f is a topological
embedding.

We now claim f is proper. Suppose K ⊂ Rp+1 is compact, which implies it is closed and
bounded - therefore, K ⊂ Rp × [–j, j] for some j > 0. Then, f–1(K) ⊆ ρ–1([–j, j]). Note that
since ρ is compact, ρ–1([–j, j]) is compact, so f–1(K) is a closed subset of a compact set which
means it is compact.

Whitney’s Theorem While Whitney proved the following theorem for to embed X in R2n,
we will prove it for 2n + 1 instead because it is significantly simpler.

Theorem 4. Let X be a smooth, n-dimensional manifold. Then, X admits a proper, smooth embed-
ding into R2n+1.
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We will prove this by coming up with a proper, smooth immersion f : X → R2n+1 which
automatically allows us to deduce that f is a smooth embedding and f(X) is therefore a
smooth submanifold.

Proof. First, we construct f : X → R2n+1 to be an injective immersion:

By Theorem 1, we can find an injective immersion f : X → RN. Now, consider any a ∈
R2N. Let Ha be the hyperplane that is orthogonal to a and let πa : RN → Ha be the
orthogonal projection i.e πa(x) = x – (x · a)a. Note that ∂πa(x)i

∂xj
= δij – (aiaj), which means

D(πa)v = πa. We claim that πa ◦ f : X → Ha ∼= RN–1 is our injective immersion for almost
all a in RN.

To prove this, construct h : X × X × R → RN s.t. h(x, y, t) = t(f(x) – f(y)) and g : TX → RN

s.t. g(x, v) = Dfx(v) =: Dvfx with x ∈ X, v ∈ TxX. Note that g is a function from a 2n
dimensional space to N and h is a function from 2n + 1 dimensional space to N.

Now, by Sard’s theorem, the set of critical values of g and h have measure zero and there-
fore their union is also measure zero. Therefore, we can select an arbitrary a ∈ RN such
that a is a regular value for both h and g. By the definition of regular values, Dg(x

′, v′) and

Dhx′,y′,t′ are both surjective where the derivatives are taken at g–1(a) and h–1(a). However,
since domain of g and h are of dimensions 2n + 1 < N and 2n < N respectively, therefore,
the derivatives cannot be surjective. This means, a ̸∈ Im(g) and a ̸∈ Im(h).

Now, we show that πa◦f is injective. Suppose (πa◦f)(x) = (πa◦f)(y). Then, (πa)(f(x)–f(y)) =
0. Given πa is the projection map, this means, f(x) – f(y) = ta for some t. Furthermore, t = 0
because if t ̸= 0, then h(x, y, 1

t ) = 1
t (f(x) – f(y)) = 1

t ta = a ∈ Im(h). Given t = 0, therefore
f(x) = f(y) and since f is injective, therefore, x = y.

Next, we show πa ◦ f is an immersion i.e we show that D(πa ◦ f) is injective. Suppose not.
Then, there exists v ̸= 0 such that D(πa ◦ f)x(v) = 0. Then,

D(πa ◦ f)x(v) = 0
D(πa)f(x)(Dfx(v)) = 0

πa ◦ Dfx(v) = 0
Dfx(v) = ta

for some t. Given f is an immersion, its derivative is injective and so t ̸= 0. This means
Dfx(v

t ) = 1
t (ta) = a ∈ Im(g) which is a contraction, so πa ◦ f is an immersion.
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So far, we have shown that πa ◦ f is an injective immersion from X to RN–1 for N > 2n + 1.
Continuing this way and composing our immersions, we will get an immersion from X to
R2n+1.

Next, we will make f a proper map.

Note that R2n+1 ∼= B2n+1 = B1(0) by some diffeomorphism s. consider s ◦ f : X → B1(0).
For simplicity in our notation, we will refer to s ◦ f as just f. Since the image of f is in B1(0),
therefore,

∣∣|f(x)|
∣∣ < 1 for any x ∈ X. Furthermore, by Lemma 2, there exists ρ : X → R

that is smooth and proper.

Define F : X → R2n+2 s.t. F(x) = (f(x), ρ(x)). Then, consider the map πa ◦ F : X → Ha ∼=
R2n+2 for some a such that the map is an injective immersion as we showed before and∣∣|a|

∣∣ = 1. Then, a ∈ S2n+1. Furthermore, suppose a ̸= (0, ...., 0,±1) which we can assume
given Sard’s Theorem tells us almost all points are regular.

We claim πa ◦ F is a proper map.

(πa ◦ F)(x) = πa(f(x), ρ(x)) = F(x) – (F(x) · a)a. Write a as a = (v,α) where α ∈ R. Then,
F(x) · a = f(x) · v + ρ(x) · α and therefore, the last coordinate of (πa ◦ F)(x) is ρ(x) – (f(x) · v +
ρ(x) · α)α) = ρ(x)(1 – α2) – αf(x) · v.

Now, suppose K ⊂ R2n+1 is compact. We claim C := (πa ◦ f)–1(K) is also compact. We
know that K compact means K is closed and bounded. Since our function is smooth, C is
also closed.

For any x ∈ C s.t. (πa ◦ F)(x) ∈ K, the last coordinate is ρ(x)(1 – α2) – αf(x) · v. Since K is
bounded, this coordinate is also bounded. note that since |f(x)| < 1 and α, v are constants,
–αf(x) · v is bounded. Therefore, ρ(x)(1 – α2) is bounded. Furthermore, since α2 ̸= 1 (given
the last coordinate of a is neither +1 nor -1), so ρ(x) is bounded.

This means, ρ(C) is bounded. Then, ρ(C) is closed and bounded and therefore, compact.
Given ρ is proper, ρ–1(ρ(C)) is compact. Now, C ⊆ ρ–1(ρ(C)) is a closed subset, so C
is compact. Therefore, πa ◦ F is a proper, injective immersion which implies πa ◦ F is a
smooth, proper embedding.

Whitney Immersion Theorem

Theorem 5. Every n-dimensional, smooth manifold can be immersed in R2n.

Proof. Suppose, X is a smooth manifold of dimension n. By Whitney’s Theorem, we can
immerse this into R2n+1. Suppose the immersion is f and suppose it takes X to M ⊂
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R2n+1. Now, we define g : TX → R2n+1 by g(x, v) = Dvfx. Given f is an immersion, it is
smooth and therefore, by Sard’s Theorem, we know that almost all values of g are regular.
Therefore, we can choose a ∈ R2n+1 such that a is a regular value. However, note that
g’s domain is TX is 2n dimensional which is less than 2n + 1. This means, Dg(x′,v′) (where
(x′, v′) is in the preimage of a under g) cannot be surjective. Therefore, a is not in the image
of g i.e a ̸∈ Im(g).

Now, with a as a regular value of g, we claim πa ◦ f is a smooth immersion from X to R2n.
To show this, we will show that D(πa ◦ f)x is injective.

Suppose, there existed a non-zero v ∈ Rn such that D(πa◦f)x(v) = 0. Now, D(πa)f(x)(Dfx(v)) =
πa ◦ Dfx(v). Given this is equal to 0, therefore, Dfx(v) = ta for some t. Now, given f is an
immersion, t ̸= 0. But then, Dfx(v

t ) = 1
t (ta) = a ∈ Im(g). This is a contradiction. Therefore,

D(πa ◦ f)x is injective. Furthermore, πa ◦ f is smooth. This gives us our immersion.

Exhaustion Function on a topological space M

Let M be a topological space. An exhaustion function f : M → R is a continuous function
such that f–1((–∞, c]) is compact in M for each c ∈ R.

Turns out we can construct such a function for any smooth manifold M as shown below:

Lemma 6. Every smooth manifold admits a smooth, positive exhaustion function.

Proof. Given M is a smooth manifold, we can build a countable open cover of M. Let that
be {Vj}∞j=1. Furthermore, let {ψj} be the smooth partitition of unity subordinate to this over
cover. Now, we construct the following function:

f(p) =
∞∑
j=1

jψj(p).

Note that this is well-defined and smooth since for any neighbourhood that p is in, there
exists only finitely many ψj that give non-zero terms. Furthermore, f is positive since
f(p) =

∑
j jψj(p) ≥

∑
j ψj(p) = 1.

Now we claim f is an exhaustion function. To show this, we will prove that for any c ∈ R,
f–1((–∞, c]) is compact.

Choose any arbitrary c ∈ R. Let N > c be a positive integer.

Now, suppose p ̸∈ ∪N
j=1Vj. Then, ψj(p) = 0 using the definition of partition of unity for any

j ∈ [1, N]. This means, f(p) =
∑∞

j=N+1 jψj(p) ≥
∑∞

j=N+1 Nψj(p) = N
∑∞

j=1 ψj(p) = N > c.
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Therefore, if p ̸∈ ∪N
j=1Vj, then f(p) > c. So, if f(p) ≤ c, then p ∈ ∪N

j=1Vj. Therefore,

f–1((–∞, c]) is a closed subset of a compact set ∪N
j=1Vj, which means it is compact.

Now, we can prove Whitney’s Embedding Theorem for the non-compact manifolds.

Theorem 7. Every non-compact smooth manifold X of dimension n admits a proper smooth em-
bedding into R2n+1.

Proof. Let f : X → R be a smooth exhaustion function on X. Then, by Sard’s Theorem, for
each non-negative integer i, there exists regular values ai, bi of f such that i < ai < bi < i+1.

Now, we define the following sets: Di, Ei ⊂ X such that D0 = f–1((–∞, 1]), E0 = f–1((–∞, a1]),
Di = f–1([i, i + 1]) and Ei = f–1([bi–1, ai+1]) for i ≥ 1. See figure 1.

Now, given f is a smooth exhaustion, each Ei is compact. Furthermore, one can show
that each Ei is a submanifold with a boundary. Therefore, we can embed it into R2n+1 by
Theorem 4. Let ψi : Ei → R2n+1

Now, Di ⊂ Int(Ei). Then, X = ∪iDi with Ei ∩ Ej = ∅ unless j = i – 1, i or i + 1.

For each i, let ρi : X → R be a smooth bump function such that ρi = 1 on an open neigh-
bourhood of Di and supp(ρi) ⊂ Int(Ei).

Now, we define
F : X → R2n+1 × R2n+1 × R by F(p) =

(∑
i even ρi(p)ψi(p),

∑
i odd ρi(p)ψi(p), f(p)

)
.

(a) F is smooth and well-defined since for each p, there is only one term in each summation
that is non-zero.

(b) F is proper as f is.

Furthermore F is injective since F(x) = F(y) implies ρ(x) = ρ(y) and using a similar argu-
ment as in theorem 1, we can show that x = y. F is an immersion too. Consider any p ∈ X
and let j such that p ∈ Dj. Then, ρj = 1 on a neighbourhood of p since p ∈ Dj and Dj
has an open neighbourhood on which ρj is 1. Suppose j is odd. Then, for any q in this
neighbourhood, F(q) = (ψj(q), ....). Then, dFq is injective since ψj is an immersion.

Having found an immersion into Euclidean space, we can then use projection like we did
with the compact case (using πa) to find an immersion into R2n+1
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Figure 1: A visualization of Di and Ei in Theorem 7
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