My research is at the intersection of machine learning, offline reinforcement learning and representation learning. I am also interested in pure mathematics such as abstract algebra, algebraic/differential topology/geometry.
I was born and raised in the beautiful city of Dhaka, Bangladesh. I am a diehard fan of FC Barcelona.
My current research focuses on two main areas: offline policy evaluation, specifically policies trained using behavioral cloning or offline RL, and test-time policy decoding methods, particularly in sampling more optimal strategies in a coherent manner.
(*) denotes co-first authorship
Bidirectional Decoding: Improving Action Chunking via Closed-Loop Resampling
Yuejiang Liu*,
Jubayer Ibn Hamid*,
Annie Xie,
Yoonho Lee,
Max Du,
Chelsea Finn
Offline Evaluation of Robotic Manipulation Policies Jubayer Ibn Hamid,
Michaล Zawalski,
Yuejiang Liu,
Yoonho Lee,
Karl Pertsch,
Sergey Levine,
Chelsea Finn.
(In preparation).
Tripod: Three Complementary Inductive Biases for Disentangled Representation Learning
Kyle Hsu*,
Jubayer Ibn Hamid*,
Kaylee Burns,
Chelsea Finn,
Jiajun Wu
What Makes Pre-trained Visual Representations Successful For Robust Manipulation?
Kaylee Burns,
Zach Witzel,
Jubayer Ibn Hamid,
Tianhe Yu,
Chelsea Finn,
Karol Hausman
I am sharing notes on various topics that have fascinated me. These are not meant to be in-depth. Rather, they are meant to cover some of the basic constructions that show up periodically and are also interesting in and of themselves.
Algebraic Topology. Foundational constructions - fundamental group, homology and cohomology. (Incomplete, will typeset later).
Algebraic Geometry. Foundational constructions and results in algebraic geometry.
Policy Gradient Methods. Building blocks (including the policy gradient theorems for both episodic and continuing tasks) of policy gradient algorithms.